Impact-Aware Manipulation by Dexterous Robot Control and Learning in
Dynamic Semi-Structured Logistic Environments

\/

|.AM. Software Integration Policy (update D5.1)

Dissemination level Public (PU)

Work package WPS5 - Integration and Scenario Validations
Deliverable number D5.8

Version F-1.0

Submission date 30-12-2022

Due date 31-12-2022

www.i-am-project.eu

This project has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No. 871899

Authors

Authors in alphabe [cal order

Name Organisa [on Email

Harshit KHURANA EPFL harshit.khurana@epfl.ch

Claude LACOURSIERE Algoryx claude.lacoursiere@algoryx.com
Alessandro MELONE TUM alessandro.melone@tum.de
Fredrik NORDFELDTH Algoryx fredrik.nordfeldth@algoryx.com

Control sheet

Version history

Version | Date Modified by Summary of changes

0.1 15-11-2022 | Fredrik NORDFELDTH First iteration of Integration policy
and plan

0.2 17-11-2022 | Fredrik NORDFELDTH Second iteration of Integration policy
and plan

0.3 18-11-2022 | Fredrik NORDFELDTH Started with the Working with GLUE
section

0.4 20-11-2022 | Claude LACOURSIERE Edits with Fredrik

0.5 21-11-2022 | Fredrik NORDFELDTH Add notes for other authors

0.6 12-12-2022 | Harshit KHURANA Add persona and workflow regarding
Dynamical Systems

0.7 12-12-2022 | Claude LACOURSIERE Add conclusion and summary

0.8 13-12-2022 | Fredrik NORDFELDTH Add text in architecture subsection +
cleanup

0.9 13-12-2022 | Alessandro MELONE Add persona and workflow regarding
|.Sense

1.0 26-12-2022 | Fredrik NORDFELDTH and Fixed comments from reviewers and

Claude LACOURSIERE polished the text.

Peer reviewers

Reviewer name Date
Reviewer 1 Teun BOSCH 16-12-2022
Reviewer 2 Jari VAN STEEN 19-12-2022

Legal disclaimer

The informa [an and views set out in this deliverable are those of the author(s) and do not necessarily
reflect the o Lcial opinion of the European Union. The informa Lon in this document is provided “as is”,
and no guarantee or warranty is given that the informa [an is fit for any specific purpose. Neither the
European Union ins [fulLans and bodies nor any person ac [ng on their behalf may be held responsible
for the use which may be made of the informa [an contained therein. The I.AM. Consor [uh members
shall have no liability for damages of any kind including without limita [an direct, special, indirect, or
consequen [alldamages that may result from the use of these materials subject to any liability which is
mandatory due to applicable law. Copyright © I.AM. Consor [urh, 2022,

TABLE OF CONTENTS

EXECUTIVESUMMARY . . . e e e e e e e e 6
1 Introduclon e 7
1.1 Purpose of thedeliverable 7
1.2 Intended audience e 7
1.3 Expectedindustrialadoption 7
2 lden[f@d personas i e e e e e e e e e 8
3 lden[fi@d usage e e e e e e 8
3.1 Identified workflows 8
3.1.1 Workflow: Developing DS based motionplanning 9
3.1.2 Workflow: Impact monitoring 9
3.1.3 Workflow: Developing control algorithms 10
3.1.4 Workflow: Development and validation of simulationmodels 10
3.1.5 Workflow: Method adaption for industrial applications 1
3.2 Requiredequipment e 1
3.21 Laboratory e e e e e e 1
322 Virtuallab 12
3.2.3 Clustercomputing e e e e e 12
4 RequirementsonsoDwWare e 12
41 Fundamental integrationrequirements oL 12
4.2 Software featurerequirements L L e 13
4.3 Requirements on software maintenance L. 14
5 USErexperience o o i i e e e e e e e e e e e e e e 14
51 Introducingthe conceptof GLUE 15
5.2 Accessability e e 15
5.3 \Versioncontrol e 15
54 Commercial software 15
55 Dataformats e 16
6 Solwdre componentsof GLUE e 16
6.1 Communication: CLICK e e 16
6.2 Simulation model definition L L L 16
6.3 Anewsolution: BRICK e 17
6.4 Communicationprotocol e 17
6.5 Control framework 18
6.6 Simulation framework and runtime L oL 18
7 Workingwith GLUE e e 18
71 LAM.BRICKfiles e 18
72 Batchjobs e e 19

7.3 Dynamical System based MotionPlanning 20

7.4 Architecture e 21
7.5 Screenshotsof runtime 22
ConcluSIoON . . . o e 23
REFERENCES e e 24

ABBREVIATIONS

Abbreviallon = Defini [Lon

EC European Commission
PU Public
WP Work Package

EXECUTIVE SUMMARY

The I.LAM. project aims to boost collaboration between industry and academic research. For this to
succeed, we need to make software and data easy to use, share and adapt for different applications such
as parameter identification and synthetic data generation to name but two. Each of these may use all or
only some of the software components developed within [.AM. , or by third party. Of central importance
here is a software-in-the-loop (SIL) configuration where a variety of controllers can be coupled with a
physics simulation library that faithfully reproduces the motion of a virtual robot.

The components include specific simulation models, libraries of control algorithms and assorted
configuration files, experimental datasets, model identification datasets, synthetic data, and finally, vir-
tual experiments configuration and results. This is in addition to libraries or modules implementing con-
trollers, adapter software that makes modules compatible using communication protocols over different
transport layers, and tools to manipulate binary data files.

It is anticipated that people will use different software libraries to simulate robot and contact dy-
namics at different level of details for instance. The same applies to nearly all aspects of simulation and
analysis stacks. It is also expected that components will be assembled to produce different applications,
and that these will be run in deterministic, synchronous mode, or in asynchronous mode as is the case
for real robotics systems.

As argued in D5.1[OUD+21], a monolithic design such as Gazebo[Fou20] is not appropriate. For one,
some features such as flexible joints needed for some of the analysis aren’t available in the simulation
libraries used in Gazebo or other commonly used tools. The same goes for flexible suction cups which
are very important in this project. More fundamentally, monolithic tools are not well suited to produce
distributed applications or reconfigurable applications.

The policy of maximum reuse, reconfiguration, modularity, and support for multiple applications
with different purposes is supported by a set of tools. These include domain specific languages for
model declaration, model composition and augmentation, as well as network communication protocols
and binary data formats which are easily manipulated. Along with this come policies for continuous in-
tegration, release management, distribution with binary packages and portable lightweight containers,
and a number of small single purpose application scripts.

The policies are meant to realize the Unix philosophy: “do one thing and do it well”. This also comes
with the use of signals instead of APIs, and using distributed processes instead of linking modules and
libraries. In addition, components should be easily interchangeable.

As a central component is a declarative language to specify physical models which can be composed
with each other. For instance a standard Panda robot URDF model can be augmented to have compliant
joints or a suction cup, without intruding on the original file. This means that we can easily have models
for different levels of details, as needed for the different applications.

1 IntroducCEon

Afull project background is found in the D5.1 deliverable report [OUD+21]. Therein we argue for the need
of impact-aware manipulators, i.e., manipulators capable of establishing contact at nonzero relaEve ve-
locity. Report D5.1 details how the I.AM. project is visioned to bring tossing, boxing and grabbing to the
repertoire of industrial robots. The present document starts from the idenCE+ed users and developers

of impact-aware technology, and proceeds to describe so%.ware and integraCon policies to saEsfy their
respecEve requirements.

1.1 Purpose of the deliverable

This deliverable is an update of the I.LAM. so%.ware integraCEon policy D5.1, addressing tesEng of the
so%oware integraCon used for the three validaon scenarios (TOSS, BOX, GRAB), and the public release
of so%oware used in the project. Once the policies are clarised and agreed upon, the developers of each
component should then strive to comply with them.

This document describes the requirements on so%.ware design and integraCEon for smooth collabora-
Eon between researchers, developers and industry. These are needed for development and deployment
of state of the art impact-aware technology. The design principles needed to achieve the requirements
are also counted as policies.

1.2 Intended audience

The disseminaon level of D5.8 is\public" (PU), i.e., itis meant for members of the ConsorEum, including
Commission Services, as well as the general public.

1.3 Expected industrial adop@Eon

The I.AM. project has one year to go and it is now (Eme to clarify the di€erent uses of the so%.ware
components and use cases. Policies presented below are pragmaCEc choices to achieve goals in terms
of funcEonality, disseminaCEon, and support for usage in a variety of contexts. As industrial applicaCEon
are both intended and expected, the policies include so%.ware license consideraCons to make adopCEon
easier, including decisions regarding which component needs to be published as open source to have
any chance of adopEon in commercial and industrial applicaCEons.

2 lden(Ee«ed personas

To understand the so%oware policy and integraCEon plan we erst deene a set of personas with di€erent
aims and goals, and analyze and their respecEve required work,ow.

A persona has a speciec set of aims and use cases, as well as requirements on work ,ow, data storage
and even license requirements. The di€erent members of |. AM. generally represent di€erent personas,
and the requirement range from specisc physical models, viz, a sucEon cup, or virtual sensor, or specisc
ways to actuate and control joints.

The personas we describe now are based on the interns, graduate students, postdocs, and Pls who
have parCEcipated in I.AM.. This covers the gamut from developers to end users of the impact-aware
features. They are as follows.

Controller developer: this persona needs simulaCEon to test, validate and tune di€erent control algo-
rithms such as task based QP control or Dynamical Systems (DS).

Model developer: this persona needs to perform parameter idenE+caCEon for both the development
of mathemaEcal models for the simulaCEon of robots, contact and impact dynamics, as well as
parametric, statEsEcal models usable by the di€erent control algorithms when reacEng to impacts.

Commissioning engineerthis persona needs to run simulatEon to determine opEmal coneguraEon of
operaEonal installaCEon and assess performance. This also implies parameter idenE+caCEon to
match simulatEon and reality.

3 IdenCE-ed usage

Given the di€erent goals of the di€erent persona, there is not one single applicaCEon which can meet

all the requirements and work,ows. For some cases one needs to perform just a few simulatEon step
and vary parameters or iniCEal condiCEons, for others one need to run simulaEons over a very long Eme
to esEmate wear and tear. Therefore, so%.ware components must be designed to be integrated in vari-
able ways. In other words, we are considering several di€erent applicaCEons, all of which use the same
components, but each suppor(Eng a di€erent usage.

Here we idenEfy the di€erent tasks, and the equipment and work,ows required to fulsll them.

Consider for instance the task of mathemaEcal modeling and validaCEon of physics simulatEons. This
requires equipping a lab environment with robots, sensors and objects to interact with and develop
control funcCEons that handle non-zero relaCEve velocity contacts, and of course, a way to store all that
datafor subsequentanalysis. Inturn, the analysis involves model validaEon and parameter iden@EecaEon
for instance.

This task is required for more than one of our personas since each needs validated models. That
would include theModel developerand Commissioning engineerThe results of this validatEon are
then used by all personas in the context of other tasks.

Note that the same model is simulated for di€erent purposes, which means that there are mulGEple,
reconegurable applicaCEons.

3.1 IdenEe«ed work,ows

The di€erent personas have di€erent aims when using the so%.ware components. This implies a work-
,0W, i.e., a set of steps they need to realize in order to produce the results they need.

We have describe work,ows for the personas de+ned above, and these will be used to moEvate the
so%oware integraon policies.

3.1.1 Work,ow: Developing DS based moCEon planning

The persona concerned here is ti@ontroller developerwho, in this case, uses techniques based on
Dynamical Systems (DS)s. These are di€erenEal equaEons which respond to the pose and velocity of
the end e€ector to produce commands that make it follow a desired trajectory. In di€erent scenarios

in the 1.LAM. project, the end e€ector comes into contact at hon-zero relaEve velocity with the semi-
structured and dynamic environment. The goal is to specify a DS that is robust to such changes.

{ Designing DSs
1. The experiment can be setup according to the scenario (TOSS, BOX, GRAB)
2. Giventhe iniCEal state of the robot from the simula@on and the desired *nal state, the moEon
of the robot is controlled using a DS which sends and receives messages
3. The DS based moCEon can be directly tested with the simulatEon

4. If the response to the DS control depends on the properEes of the robot so the simulaCEon
helps understand the desired moE&on visually

{ Learning DSs

1. The experiment can be setup as previously

2. Data is collected for successful experiments with a variety of iniCEal coneguratEons of the
robot

3. Desired ¢nal coneguraon and the velocity of the end e€ector to perform the task is learnt
using the data collected

4. The DS is updated with the learned data and is then used for online moCEon planning from
the iniCEal to the desired state of the robot

3.1.2 Work,ow: Impact monitoring

The objecEve here is to compare data from the impact monitoring algorithm running on a real robot
using sensors directly with data from the corresponding simulatEon. Note that this can also be done in

the simulaCEon if adequate simulated sensors are available.
The work,ow is as follow.

1. Setup the simulaCEon with validated parameters and prescribed iniCEal condiCEons
2. Run the simulaCEon using the same control algorithm as for the real robot

3. Collect the data from the simulatEon which corresponds to that available on the real robot such
as encoder posiEons and torque values (this is described in the Franka Emika interface

franka::RobotState [Gmb20])

4. As needed, augment this with addiCEonal informaCEon available in the simulatEon but not directly
on the real robot

5. Run the impact monitoring on the simulaCEon

Note that in this context, the simulatEon can be stripped down by disabling graphics for instance.

The last point allows for running the scenario very many (Emes, adding uncertainty by changing pa-
rameters, in order to test the robustness of the impact monitoring algorithm.

The simulaEon Eme can be reduced by idenEfying the approximate Eme locaEon of impact, and
restart just before that point, and then varying the iniCEal condiCEons.

It should be possible to save simulatEon data in a data sle, for later data analysis. For large datasets

HDF5 [Gro19] should be used.

3.1.3 Work,ow: Developing control algorithms

There are of course other types of controllers besides DS. For instamggtc contains task based

QP control methods. These must be tuned in di€erent ways, one involves large data sets with domain
randomizaCEon to improve robustness, much as in the case of impact monitoring. In fact, it is expected
that impact monitoring would be used in impact-aware controller development.

1. Setup experiment as previously

2. Setup simulated validaCEon experiment

Implement control algorithm

Generate synthe@E&c data with simulatEons

Analyze syntheEc data to improve control algorithm
Deploy control algorithm in simulatEon environment

Deploy control algorithm with real robot

© N o 0 > W

Publish validated simulaCEons and results

We suggest a work,ow which uElize both a physical and virtual lab. Also, large datasets containing
syntheEc data must be stored in HDF5 with an agreed upon layout. Tools for manipulaEng the data must
be produced.

3.1.4 Work,ow: Development and validaCEon of simulaCEon models

The models we are considering here range from compliant joints to electric drivelines to sucEon cups.
For all of these, new simula@on modules must be produced. Some can be built from exisEng components
but some require enErely new mathemaEcal model.

1. Setup experiment

2. Record real world behavior using a control algorithm when needed
3. Setup virtual lab to match the physical one

4. Run simulaCEon with the same control algorithm when relevant

5

. Perform parameter idenE+scaCEon

10

6. Construct mathemaEcal models
7. Update the simulaCEon library
8. Distribute the validated simulatEon model

This can be performed repeatedly to produce models of di€erent «delity, resoluEon, and computa-
Eonal costs. Not all applicaCEons require the most advanced model.

3.1.5 Work,ow: Method adapon for industrial applicatEons

The enal test is commissioning with real robots, but now with the aim of producing a reliable combina-
(Eon of control and sensor algorithms to perform a task hopefully more reliably and faster than previous

installaCEons.
This would through an experimental stage for validaCEon of course.

Construct both a real and a virtual lab, both capable of compa(Eble data collecEon
Perform parameter iden@Eescaon to calibrate the simulaCEon as needed

Find a suitable control algorithm for the intended applicaCEon

Implement this in tools compaEble with company policies

Integrate simulatEon with exisEng controller framework

Compare experimental data with virtual lab results

Test the performance of the hardware

Convert the real lab to a produc&on statEon

© ® 4 O g A W N

Test *nal performance

Companies have policies regarding the use of so%.ware from third parEes and restricEEons regarding
acceptable licenses. This must be addressed in our policies.

3.2 Required equipment

TheController developerand Commissioning engineemeed access to a lab for hardware in the loop
(HIL) tesEng and to a virtual twin for simulaEon in the loop (SIL) tesCEng. Mwdékedeveloper, at
least experimental data from a lab is needed.

3.2.1 Laboratory

A suitable lab must be equipped with the necessary robots, objects, sensors, cameras etc., and the
robots must have compable interfaces to control libraries, preferably the main one used in [.LAM.,
namely,mcrtc . Otherwise, adapters are needed. There must be a way to save data in binary form
in a commonly agreed format and layout. HDF5 is to be used for that.

11

3.2.2 Virtual lab

The virtual lab must contain virtual models of robots, both in terms of 3D graphics but also in terms of
physical properEes. It must provide interfaces for the control libraries, but also for the formaced data
produced in the lab as well as tools to manipulate and analyze it.

The virtual lab can operate in interacCEve mode with 3D graphics, allow for di€erent types of visu-
aliza®Eon by communicaEng kinemaEc data to other applicaEons such as RViz for instance, and support
dynamic plo“ng. Likewise, the virtual lab must provide for 0,ine execuon as needed for parameter
searches, domain randomizaCEon, generaCEon of synthe(Ec data, and learning experiments.

The robot models must provide for di€erent level of details so that simulatEons can be sped up when
high «delity is not needed, or when tes@Eng whether or not ,exible joints are relevant for a parEcular
applicaEon.

The meaning of composiCEon here is that though joints are considered to be rigid in, say, a URDF
model, ,exibility can be added to this without any interference with he basic model. The same goes
with sucCEon cups.

The coneguraCEon mechanism must make it easy to de<ne the signals to be exchanged between the
simulaCon and the controller. Whether a robot is velocity, posiCEon or torque controlled is independent
of the robot model itself. The composiCEon strategy separates the coneguratEon of components that are
orthogonal to each other, so one can choose the relevant signals for a given controller.

ComposiCEon avoids \copy-paste disasters" where an original model becomes modised in di€erent
ways in di€erent applicaCEons. Also, this strategy aims at using naCEve formats instead of conversion
to a common format. If one needs to modify a URDF model, one uses standard tools for that. The
coneguraCEon loader performs necessary conversion and mapping to given simulaCEon libraries during
iniEalizaCEon.

3.2.3 Cluster compuEng

GeneraEon of syntheEc data via millions of virtual experiments. This too requires techniques for the
storage and manipulaCEon of data, as well as special scripts to launch jobs.

4 Requirements on so%oware

This secEon describes the func@E&onality of the so%.ware components required for the di€erent personas
to realize their respec@Eve work,ows, but also to easily incorporate on-going development from others
into their work. The aim is to allow everyone to focus on their work knowing that other components are
validated.

4.1 Fundamental integraCEon requirements

For our personas to be able to use the so%oware on their workstaon, rely on the results and collaborate
with each other we de¢ne a list of fundamental requirements.

For each work,ow above, several so%o.ware components are required and these must be assembled
in some sort of applicaEon. The components must be integrated in some way to send and receive data
to and from each other. IntegraCEon can be done at the so%oware library level, using di€erent APIs to
construct one main applicaCEon. But we need several applicaCEons each using di€erent subsets of the
components, each wiring them di€erently. This can lead to dif culEes.

12

However, integraCEon can be done in data-centric way. For this case, each separate library uses one
common API for a communicaCEon library and a small client applicaCEon is wricen. Such a client is gen-
erally very easy to write. For cases such as controller libraries which already support several commu-
nicaEon protocols and transport layers, an adapter can be wricen if none of the exis@Eng protocols is
suitable.

In the SIL context, it is important to have both synchronous and loss-free communicaCon since de-
terminism can be lost otherwise. In the HIL context however, communicaCEon is usually asynchronous
and lossy. This is the case of CAN busses for instance. This hardly macers generally because the com-
municaEon rates are very high, at 1KHz or 2KHz. For complicated systems, simulaCEons cannot always
achieve such speed.

A signals based applicaCEon needs some sort of master and as we discussed, this must be able to
run in di€erent modes for di€erent use cases. It is much easier to do that when using communicaEon
protocols than with API bindings. One can have several masters, one for each applicaEon, hopefully
reusing modules. Also, one can replace a module with a di€erent one having the same funcEonality
by simply wriCEng a compaEble client. The master is enCErely oblivious of the parEculars of any and all
modules.

A client-server architecture like the one described, based on signal, makes it easier to store simula-
(Eon data since only the server needs to link to a library that can write formac<ed data. Though HDF5 is
favored because of how well the data can be organized and annotated, wriEng CSV eles is possible as
well.

Of course, this comes with some degree of complexity. Gileso%o.ware components we want to
use in a given applicaCEon, we nelddclient processes and one server one. These processes have to
be launched in the right sequence, made to wait unCEl everyone is ready, and the server must perform
checks to see if the modules have compaEble messages. Areliable and comprehensive launcher for such
distributed applicaCEons is dif cult to produce in the general case, but all the examples we have covered
so far require only simple scripts.

One can also do integraon by producing bindings to a scrip(Eng languages such as Python for each
of the di€erent modules. This is usually easier than working directly with the di€erent APGtififor
instance, but more dif cult than the message based integraCEon, as one would need to write wrapper
APIs if di€erent libraries were used for the same tasks, viz, physics simulaCEon.

Central to this design is the speciecaCEon of which signals must be sent or received by each module,
and this must of course be keptin sync with the model desniEon. With the composiEon model described
previously, this means that the list of signals is stored along the models they belong to, and can be
augmented as needed.

The simulaCEon models must be standalone and usable without any control framework if desired,
and must be declared using open format, or combined from exis@Eng components available in open for-
mat. For instance, we have made extensive use of URDF in conjuncon with BRICK. See Sec. 7 for more
informaCEon.

4.2 So%oware feature requirements

A number of features are required to support SIL, parameter idenEscaCEon, validaEon of the simula-
Eons and hypotheses behind the controller designs, parameter search for controllers, and generaCEon
of synthe(Ec data. Some of these features actually correspond to di€erent applicaEons, or at least, a
polymorphic applicaCEon.

{ Easy to use applicaCEon launcher

13

{ Easy access to suitable control libraries

{ Synchronous mode simulat&ons for SIL

{ Support for mulEple communicalEon protocols

{ Support for URDF eles

{ Di€erent control modes: posiCEon, velocity, torque
{ ValidaCEon experiments

{ Parameter idenEescaEon

{ Parameter opEmizaCEon

{ GeneraEon of syntheEc, randomized data

{ Real-Eme mulEbody simulaCEon suppor@&ng impacts and fricEonal contacts
{ Open communicaEon framework for integratEon
{ O,ine and online simulatEon mode

{ O,ine massively parallel simulaEons

{ Saving simulaCEon data in HDF5

{ Suppor@Eng scripts for HDF5 data

4.3 Requirements on so%.ware maintenance

Any component with &C++code base or Python bindings should be able to integrate and communicate
with the others in the framework. Of course, any component which can communicate over an internet
protocol can be integrated as well.

Compa(Eble components are required to have stable releases which then can be documented for
future reproducCon of the results using them. They should also comply with standard release manage-
ment and con@&nuous integraCon pracEces, including revisioning, unit, and integratEon tesE&ng.

5 User experience

Even though several so%.ware packages are required for any one of our personas, users should be able to
install everything with just one operaCon. They should also expect rigorous adherence by the developers
to standard development pracCEces with respect to release management, tesEng, documentaCEon and
bug reporEng.

In parCEcular, the user should expect the following.

{ Release management and conEnuous integraon of all components
{ IntegraCEon tesEng for full system releases

{ Standard binary packages for installaCEon on a set of supported plaSorms

14

{ Docker containers for other plaSorms

{ Open source modeling framework

{ Seamless switch between SIL and HIL

{ Python as runEme environment for access to data handling and processing tools

{ A generic data format based on HDF5 for storing experimental and syntheEc data

Releasing binaries compaEble with naEve package managers on Linux distribuEons provides the best
user experience. The same can be done on Mac OS X. Ideally, there should be very li<le if any hand
intervenEon when installing the required packages. Because several non-standard packages might be
involved, release via self-contained Docker images is also supported. This requires nearly no conegura-
Eon by the user.

This being a GitLab centric project, users can of course clone the repository and compile themselves.

5.1 Introducing the concept of GLUE

To meet the user descripEons, requirements and idenE+ed work,ows a development of a Python frame-
work which implements the requirements was started. We decided to call the set of compaEble s0%o-
ware components for impact-aware manipulaCEon \GLUE". The type of glue we have in mind here is the
prototyping kind which is used when building experimental mock-ups as components can be replaced
dynamically. Since the objec@Eve is to support mulE&ple applica&ons from parameter idenEscalEon to
synthe(Ec data, and reconegure from SIL to HIL, GLUE is not a framework, nor is it an applicaCEon.

We are considering renaming this to contain RACK in the name. The RACK we think of is that used
for either modular synthesizers or complicated lab setups. This is because using patch cables, one can
re-route signals in di€erent ways and transform the func&on of the connected devices.

5.2 Accessability

Users of GLUE can clone the Git repository, and then choose between a full installaCEon if they are on a
clean Ubuntu 20.04 system, or pull the latest Docker container, which is built by the GitLab runners. At
the moment the Git repository is being maintained by Algoryx. Users of GLUE should be able to exchange
their work and repeat each others' experiments.

5.3 Version control

Maintainers of so%o.ware modules used in GLUE should try to support backward compaEbility. Models
should include the version number against which they were developed and the range of version number
against which they can run successfully.

5.4 Commercial so%oware

We cannot make an assumpEon that all involved so%.ware packages are open source. For example AGX
Dynamics is distributed in binary form and requires a yearly license fee. So we have to assume users

of GLUE can access personal licenses of all commercial so%.ware required. What is done to minimize
fricEon is that a license to AGX Dynamics is built into the Docker Container, which has a builEn valid,
Eme limited license. This will allow users connected to the project to use the library without making an
immediate purchase.

15

5.5 Data formats

Instead of having one framework that can do everything, GLUE enables any so%.ware component to be
part of a specisc soluEon. By using open formats and protocols with automaEcally generated messages
from model desniCEons, controller, simulaCEon libraries, visualizatEon frameworks and other components
can be replaced easily. Of course the detailed behavior will change depending on which simulaEon
library is used, which numerical Eme integra@Eon method and which solver is chosen within same. Details
of friccEon models and solvers, the availability of certain types of models such as joint fricCEon and ,exible
joints can limit funcEonality. Nevertheless, this kind of polymorphism is useful.

6 So%oware components of GLUE

GLUE is meant to connect a number of components together with thin interfaces. We follow the Unix
philosophy here: \do one thing but do it well". Here we list the current choices of components, formats
and protocols.

6.1 CommunicaCEon: CLICK

CommunicaCon protocols used on hardware work at high frequency, in the kilohertz range, and are gen-
erally lossy. Control modules are designed for such protocols. To communicate with a simulaCEon and to
guarantee determinism however, it is necessary to have a client which bu€ers messages and guarantee
that no frame boundary is missed. The frame boundary here is connected to the xed integraEon step
used in the simulaCEon.

The need for an intermediate library to establish synchronous communicatEon became clear as Al-
goryx worked on projects with di€erent robot manufacturers. The resultis CLICK, that will soon (before
mid 2023) be released as open source. CLICK is communicaon layer built on top of Zexalitigly
used open-source messaging library. Like anything ZeroMQ, CLICK is lightweight and fast, and works
on all opera@Eng systems. CLICK has been used by Algoryx' customers by wri®Eng a small adapter layer
to bridge with their own proprietary communica@on transport layer and protocol. It also has a Python
interface, namely, pClick.

There are plans to implement alternaEve transport layers for CLICK, replacing ZeroMQ with the
Robot Opera@Eng SystefROS). ROS includes two communicaCEon protocols, ROS and ROS2. Both im-
plement \nodes" and follow a publisher-subscriber model. They di€er in the transport layer. This is not
synchronous per se which is why an adapter is needed.

6.2 Simula®on model de*niEon

Models of robots deened with URDF [Rob20] «les are widely and freely available. They can be used
directly in the GLUE simulaCEon framework. The list of messages going to and from the control module
are read directly from the robot desniCEon thanks in part to comprehensive support for ROS and URDF
in the QP robot control frameworkncrtc , developed by the partner CRNS.

However, the URDF format has limitaCEons. It only supports ideal joints, not ,exible ones, it does
not have any noCEon of ,exible or so%. elements (e.g., a sucEon cup), and it cannot easily handle closed

https://zeromq.org/
2https://www.ros.org/

16

kinemaCEc loops. And of course, desniEon of material proper(Ees for contacts are not included. That is
before we start discussing simulated sensors.

We need to look further to fulell the modeling requirements.

In D5.1, Universal Scene Descrip@&on igi3)menEoned as a good candidate declaraEve physics
modeling. This has been invesEgated at Algoryx and the conclusion is that it is inadequate. Despite
USD providing great features for 3D authoring and animaCEon, it does not support simulaCEon in a naEve
way. NVidia did manage to introduce physics simulatEon but that e€ort is far from complete and applies
only to their own physics simulaCEon library, namely, PhysX. Mapping the AGX API to this would be a
monumental e€ort and is a big commercial risk. Therefore, Algoryx decided to not invest in supporEng
USD in the foreseeable future.

6.3 A new solu@Eon: BRICK

During the I.AM. project Algoryx has been developing a new open declaratEve format for physics model-
ing. This is called BRICK and is a schema based on a subset of WAldh makes the coneguraEon sles
human readable and editable. The semanEcs of the declaratEve statements is not directly connected to
the AGX Dynamics APl and itis possible to write backends to support other nowadays popular simulaCEon
toolkits such as Bullet Physics or MuJoCo, for instance.

The BRICK seman(Ecs s polymorphic and splitinto speciec bundles, e.g., Physics, Mechanics, Robo(Ecs.
These are developed for generic modeling of simulaCEon environments. Inside each bundle, the termi-
nology is adapted to the speciec domain and the backend then maps these to the specisc API elements
of, e.g., the AGX Dynamics library. For instance, in the roboEcs community, it is more common to say
\link" instead of \rigid body".

The bundles come with a data driven runEme module, currently wri<erC# which can be inte-
grated to anyC#or Python simulaCEon framewStkBRICK.Robo(Ecs can serve as a layer on top of the
URDF deeniCEon and augment the physics with essenEal models of IMU sensors, ,exible sucEon grippers,
along with respecEve command and signal desniEons to be used by CLICK explained below in Sec. 6.1. By
integraEng BRICK, GLUE benests from a modeling format with reusable components, which can be used
to compose simulaEon environments with a hierarchial methodology. Users can reuse what others have
declared, and then extend parts of the de<ni(Eon, like augmenEng the suc&on gripper to be ,exible, or
joint motors to have internal fricCEon. BRICK also comes with a runEme called AGXBrick | the backend
| which instanEates the simulatEon models in AGX Dynamics. This means that users of GLUE need not
code anything to get started with their work.

The design of BRICK includes data typing and inheritance by composiCEon. A BRICK ele can contain a
reference to a URDF ¢le. The lacer is parsed and converted to the BRICK semanCEc, and this can then be
augmented with features available in AGX Dynamics which cannot be deened in the URDF schema.

6.4 CommunicaCEon protocol

The list of commands to send and signals to read are desned in the simula@on model sles. A handshake
at startup tests if the controller and model have compaEble signals.

By using Python as a runEme, also the funcEonality in the AGXBrick Python module can be uCElized,
including rese“ng the scene in variable consguraCEons enabling parameter search and domain random-

Shttps://graphics.pixar.com/usd/docs/index.html
“yaml.org
SAlgoryx is currently working on a rewrite of Brick @++to enable a wider range of possible frameworks for integraCEon.

17

izaCEon. When launching the simulaCEon models using AGXBrick instead of the CLICK runEme, the robots
can also be controlled asynchronously over ROS or ROS2. The BRICK simulatEon models then need to
be extended with ROS topics for signals that are not part of the URDF deeniCEon. However, the asyn-
chronous messaging will not be determinisCEc in general.

6.5 Control framework

The mcrtc control framework developed by CNRS have implemented a CLICK client, calleticknc

The control sequences wricen with metc can then be launched either to control the real robot or
simulaCEon, meaning that it supports both SIL and HIL. Similarly, other (open-source) QP control robot
libraries could be employed in the future by implemenng a suitable CLICK client.

6.6 Simulaon framework and runEme

For impact-aware controllers to receive accurate sensor feedback from the simulaCEon, comparable with
the real robot sensors, the simulatEon framework need to support non smooth real Eme simula@on with
accurate force calculaEons. This is exactly what AGX Dynamics does. However, AGX Dynamics comes
with a C++ API accessible from Python, and no GUI for authoring. Therefore the choice for the simu-
laCEon run@Eme to depend on AGXBrick and AGXClick enables single instrucEon execuon of simulatEon
environments, with synchronous communicaEon and no coding needed since all choices, coneguratEons
and funcCEonality are built into the model «les.

Note that a comprehensive applicaEon launcher is beyond the scope of this project. Indeed, a GLUE-
centric simulatEon generally involves mul@Eple processes distributed over mulEple computers communi-
ca(Eng over agreed-upon ports. Each process must be started on a designated machine and in the right
sequence. We wrote special purposes launchers but this problem must be addressed in more generality.

7 Working with GLUE

A Git repository has been set up to fulell the requirements listed above. In this secEon we give a taste
of a few snapshots from the current implementaCEon and usage.

7.1 1.AM. BRICK eles

The GLUE framework supports at least the following use cases: (i) real Eme simulaCEons with a QP con-
troller or (ii) o,ine simulaCEons for parameter idenEescaon or (iii) generaEon of syntheEc data with
batch jobs. The simulaCEon models need to be mulEpurpose so that they can be used for both cases.
Same model, di€erent applicatEons.

There is a model catalogue including the available robots, objects for manipulatEon, conveyor belts
and the pairwise interacEon deesniEons. A simulatEon environment can be composed using any combi-
naEon of these models, and used for either of the above menEoned cases. Both the models and the
simula@on environment, which is also a BRICK model, are based upon I.AM. specisc template models.

I_.AM_SIMULATION
.extends Physics.Component

exit_threshold_linear:
.doc: >

18

A threshold for linear velocities used as an end condition.

[m/s]
.type: Real
.value: 0.001

exit_threshold_angular:
.doc: >
A threshold for angular velocities used as an end condition.
[rad/sec]
.type: Real
.value: 0.01

early_exit_conditions:

.doc: >
List of functions to test if the simulation should
do an early exit. Examples
'fallen_below_floor' ,
‘zero_velocity' ,
'zero_relative_conveyor_velocity' .
Note: All batch.objects will be tested.

.type: List<String>

.value: []

time_step:
.type: Real

simulation_time:
.type: Real

7.2 Batch jobs

The example above shows BRICK declaratEons extenBimges.Component, the most basic

Brick.Physics scene, with thresholds and exit condiCEons for batch simulatEons. Snapshot of the low-
est level template for a simulatEon environment in [.AM.The real Eme simulaEon applicaCEon does of
course not need to use the acributes that does not make sense, and vice versa. Each acribute can be
overridden in any model extending theAM_SIMULATION model.

A case specisc simulaEon environment template is as follows

I_ AM_TOSSBOXCONVEYOR

.extends |I_AM_SIMULATION
box:
.type: CardboardBox

conveyor
.type: LabConveyor

19

early_exit_conditions:
- fallen_below_floor
- zero_velocity # if fallen on ground
- zero_relative_conveyor_velocity # if fallen on
conveyor successfully

which extends I_AM_SIMULATION and defines a box and a conveyor in the scene. Then there are several
examples on how this scene is extended further depending on which box to toss, and which conveyor
to land on.

TossScene:
.extends: I_AM_TOSS_BOX_CONVEYOR
conveyor:
.value: LabConveyor
speed: 1

dir: Vec3(1.5,0,0)
lengths: [2.55,1.0,0.84]
localTransform:
position: Vec3(-0.33,-1.9,0.42)
rotation: Math. EulerAngles (0, O, -Math.Pl*0.5)

TossSceneBox4:
.extends: TossScene
box:

.value: Box4
localTransform:
position: Math.Vec3(-0.3,0.2,0.7)

TossSceneBox5:
.extends: TossScene
box:

.value: Box5
localTransform:
position: Math.Vec3(-0.2074,0.2040,0.6967)

The batch functionality of GLUE allows for loading one of the TossScenes with a set of initial conditions
collected from real world recordings, simulate for a chosen amount of time, and then reset the scene at
the next initial state. The result of the toss batch simulations is a large set of recordings, which are used
as input to a postprocessing algorithm currently implemented in MATLAB.

A future feature is to load the batch job with a controller in the loop, also with online parameter
search, instead of the current offline parameter search done with MATLAB.

7.3 Dynamical System based Mo [an Planning

As explained in Section 3.1, DS based motion planning can be extended to be impact-aware. A dynamical
systems provides the rate of change of state variables and hence its output can be sent to the controllers.

Currently the DSs are implemented as standalone C++ libraries with CMake support. Some inter-
facing was implemented so the libraries can be called by mc_rtc through its components. For now, the

20

dynamical systems are independent of the robot. Different DSs can be used to generate the desired
motion and the controller takes care of the joint limits, velocity limits, collisions etc. Creating DSs as a
stand alone library makes the system modular and easy to use. The DS framework can also interact with
the controller framework and the simulation framework through CLICK communication, separate from
mc_rtc, though this will not be implemented in this project. The data that a DS would need either to
learn the motion, or the desired final state of the robot can be easily generated through the simulation
framework. For designing DS based motion which are robot dependent, for e.g., motions that are de-
pendent on robot’s inertia, or other metrics, the DS framework independently has access to the robot’s
URDF and will exist as a stand alone library. This modularity allows for adding different dynamical sys-
tems, systematically understanding their behavior with and without the control system, and understand
how they lead the robot to interact with the environment through the simulation framework as they
implement non-smooth interaction models.

7.4 Architecture

Figure 1illustrates the content of the Docker container including all components needed for running the
integrated software components we call GLUE.

Controller Framework

Algoryx

AGX DYMNAMICS

Figure 1: .AM. integration architecture.

21

Controller Framework

Algoryx

AGX DYNAMICS

Figure 2: I.LAM. integration architecture with controller framework outside docker.

The simulation model files and the Python applications that implement the logic for impact-aware ma-
nipulation within the I.AM. project are placed in a Docker Volume® which allow for updating the models
and applications. To introduce something like a new controller, we suggest that the controller framework
is built and running native on the machine of the developer, see Figure 2. The other parts of GLUE are
still maintained in the container. The developer may distribute the controller as an executable, within
the GLUE repository, for others to be able to reuse the work. As long as a software component commu-
nicates using CLICK, by implements a client as done for the mc_rtc controller framework, components
outside of GLUE can be integrated in the runtime.

7.5 Screenshots of run [mk

Figure 3 shows the instruction to load one of the examples of GLUE with Python next to the web viewer
used for visualizing when the simulation runs in the Docker container. Figure 4 shows the simulation
in a later state when the robot has picked up the box before it is being tossed. Some details about the
communication between the simulation and the controller is visible in the terminal next to the 3D visual.

*https://docs.docker . com/storage/volumes/

22

https://docs.docker.com/storage/volumes/

	EXECUTIVE SUMMARY
	Introduction
	Identified personas
	Identified usage
	Requirements on software
	User experience
	Software components of GLUE
	Working with GLUE
	Conclusion
	REFERENCES

