
Impact-Aware Manipulation by Dexterous Robot Control and Learning inDynamic Semi-Structured Logistic Environments

I.AM. Software Integration Policy (update D5.1)

Dissemination level Public (PU)
Work package WP5 - Integration and Scenario Validations
Deliverable number D5.8
Version F-1.0
Submission date 30-12-2022
Due date 31-12-2022

www.i-am-project.eu
This project has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No. 871899

Authors

Authors in alphabe�cal order

Name Organisa�on Email

Harshit KHURANA EPFL harshit.khurana@epfl.ch
Claude LACOURSIÈRE Algoryx claude.lacoursiere@algoryx.com
Alessandro MELONE TUM alessandro.melone@tum.de
Fredrik NORDFELDTH Algoryx fredrik.nordfeldth@algoryx.com

Control sheet
Version history

Version Date Modified by Summary of changes

0.1 15-11-2022 Fredrik NORDFELDTH First iteration of Integration policyand plan
0.2 17-11-2022 Fredrik NORDFELDTH Second iteration of Integration policyand plan
0.3 18-11-2022 Fredrik NORDFELDTH Started with the Working with GLUEsection
0.4 20-11-2022 Claude LACOURSIÈRE Edits with Fredrik
0.5 21-11-2022 Fredrik NORDFELDTH Add notes for other authors
0.6 12-12-2022 Harshit KHURANA Add persona and workflow regardingDynamical Systems
0.7 12-12-2022 Claude LACOURSIÈRE Add conclusion and summary
0.8 13-12-2022 Fredrik NORDFELDTH Add text in architecture subsection +cleanup
0.9 13-12-2022 Alessandro MELONE Add persona and workflow regardingI.Sense
1.0 26-12-2022 Fredrik NORDFELDTH andClaude LACOURSIÈRE Fixed comments from reviewers andpolished the text.

Peer reviewers

Reviewer name Date

Reviewer 1 Teun BOSCH 16-12-2022
Reviewer 2 Jari VAN STEEN 19-12-2022

1

Legal disclaimer
The informa�on and views set out in this deliverable are those of the author(s) and do not necessarilyreflect the official opinion of the European Union. The informa�on in this document is provided “as is”,and no guarantee or warranty is given that the informa�on is fit for any specific purpose. Neither theEuropean Union ins�tu�ons and bodies nor any person ac�ng on their behalf may be held responsiblefor the use which may be made of the informa�on contained therein. The I.AM. Consor�um membersshall have no liability for damages of any kind including without limita�on direct, special, indirect, orconsequen�al damages that may result from the use of these materials subject to any liability which ismandatory due to applicable law. Copyright © I.AM. Consor�um, 2022.

2

TABLE OF CONTENTS

EXECUTIVE SUMMARY . 6

1 Introduc�on . 71.1 Purpose of the deliverable . 71.2 Intended audience . 71.3 Expected industrial adoption . 7
2 Iden�fied personas . 8

3 Iden�fied usage . 83.1 Identified workflows . 83.1.1 Workflow: Developing DS based motion planning 93.1.2 Workflow: Impact monitoring . 93.1.3 Workflow: Developing control algorithms . 103.1.4 Workflow: Development and validation of simulation models 103.1.5 Workflow: Method adaption for industrial applications 113.2 Required equipment . 113.2.1 Laboratory . 113.2.2 Virtual lab . 123.2.3 Cluster computing . 12
4 Requirements on so�ware . 124.1 Fundamental integration requirements . 124.2 Software feature requirements . 134.3 Requirements on software maintenance . 14
5 User experience . 145.1 Introducing the concept of GLUE . 155.2 Accessability . 155.3 Version control . 155.4 Commercial software . 155.5 Data formats . 16
6 So�ware components of GLUE . 166.1 Communication: CLICK . 166.2 Simulation model definition . 166.3 A new solution: BRICK . 176.4 Communication protocol . 176.5 Control framework . 186.6 Simulation framework and runtime . 18
7 Working with GLUE . 187.1 I.AM. BRICK files . 187.2 Batch jobs . 19

3

7.3 Dynamical System based Motion Planning . 207.4 Architecture . 217.5 Screenshots of runtime . 22
Conclusion . 23

REFERENCES . 24

4

ABBREVIATIONS

Abbrevia�on Defini�on

EC European Commission
PU Public
WP Work Package

5

EXECUTIVE SUMMARY

The I.AM. project aims to boost collaboration between industry and academic research. For this tosucceed, we need to make software and data easy to use, share and adapt for different applications suchas parameter identification and synthetic data generation to name but two. Each of these may use all oronly some of the software components developed within I.AM. , or by third party. Of central importancehere is a software-in-the-loop (SIL) configuration where a variety of controllers can be coupled with aphysics simulation library that faithfully reproduces the motion of a virtual robot.The components include specific simulation models, libraries of control algorithms and assortedconfiguration files, experimental datasets, model identification datasets, synthetic data, and finally, vir-tual experiments configuration and results. This is in addition to libraries or modules implementing con-trollers, adapter software that makes modules compatible using communication protocols over differenttransport layers, and tools to manipulate binary data files.It is anticipated that people will use different software libraries to simulate robot and contact dy-namics at different level of details for instance. The same applies to nearly all aspects of simulation andanalysis stacks. It is also expected that components will be assembled to produce different applications,and that these will be run in deterministic, synchronous mode, or in asynchronous mode as is the casefor real robotics systems.As argued in D5.1[OUD+21], a monolithic design such as Gazebo[Fou20] is not appropriate. For one,some features such as flexible joints needed for some of the analysis aren’t available in the simulationlibraries used in Gazebo or other commonly used tools. The same goes for flexible suction cups whichare very important in this project. More fundamentally, monolithic tools are not well suited to producedistributed applications or reconfigurable applications.The policy of maximum reuse, reconfiguration, modularity, and support for multiple applicationswith different purposes is supported by a set of tools. These include domain specific languages formodel declaration, model composition and augmentation, as well as network communication protocolsand binary data formats which are easily manipulated. Along with this come policies for continuous in-tegration, release management, distribution with binary packages and portable lightweight containers,and a number of small single purpose application scripts.The policies are meant to realize the Unix philosophy: “do one thing and do it well”. This also comeswith the use of signals instead of APIs, and using distributed processes instead of linking modules andlibraries. In addition, components should be easily interchangeable.As a central component is a declarative language to specify physical models which can be composedwith each other. For instance a standard Panda robot URDF model can be augmented to have compliantjoints or a suction cup, without intruding on the original file. This means that we can easily have modelsfor different levels of details, as needed for the different applications.

6

1 IntroducŒon

A full project background is found in the D5.1 deliverable report [OUD+21]. Therein we argue for the need
of impact-aware manipulators, i.e., manipulators capable of establishing contact at nonzero relaŒve ve-
locity. Report D5.1 details how the I.AM. project is visioned to bring tossing, boxing and grabbing to the
repertoire of industrial robots. The present document starts from the idenŒ•ed users and developers
of impact-aware technology, and proceeds to describe so‰ware and integraŒon policies to saŒsfy their
respecŒve requirements.

1.1 Purpose of the deliverable

This deliverable is an update of the I.AM. so‰ware integraŒon policy D5.1, addressing tesŒng of the
so‰ware integraŒon used for the three validaŒon scenarios (TOSS, BOX, GRAB), and the public release
of so‰ware used in the project. Once the policies are clari•ed and agreed upon, the developers of each
component should then strive to comply with them.

This document describes the requirements on so‰ware design and integraŒon for smooth collabora-
Œon between researchers, developers and industry. These are needed for development and deployment
of state of the art impact-aware technology. The design principles needed to achieve the requirements
are also counted as policies.

1.2 Intended audience

The disseminaŒon level of D5.8 is \public" (PU), i.e., it is meant for members of the ConsorŒum, including
Commission Services, as well as the general public.

1.3 Expected industrial adopŒon

The I.AM. project has one year to go and it is now Œme to clarify the di€erent uses of the so‰ware
components and use cases. Policies presented below are pragmaŒc choices to achieve goals in terms
of funcŒonality, disseminaŒon, and support for usage in a variety of contexts. As industrial applicaŒon
are both intended and expected, the policies include so‰ware license consideraŒons to make adopŒon
easier, including decisions regarding which component needs to be published as open source to have
any chance of adopŒon in commercial and industrial applicaŒons.

7

2 IdenŒ•ed personas

To understand the so‰ware policy and integraŒon plan we •rst de•ne a set of personas with di€erent
aims and goals, and analyze and their respecŒve required work‚ow.

A persona has a speci•c set of aims and use cases, as well as requirements on work ‚ow, data storage
and even license requirements. The di€erent members of I.AM. generally represent di€erent personas,
and the requirement range from speci•c physical models, viz, a sucŒon cup, or virtual sensor, or speci•c
ways to actuate and control joints.

The personas we describe now are based on the interns, graduate students, postdocs, and PIs who
have parŒcipated in I.AM.. This covers the gamut from developers to end users of the impact-aware
features. They are as follows.

Controller developer: this persona needs simulaŒon to test, validate and tune di€erent control algo-
rithms such as task based QP control or Dynamical Systems (DS).

Model developer: this persona needs to perform parameter idenŒ•caŒon for both the development
of mathemaŒcal models for the simulaŒon of robots, contact and impact dynamics, as well as
parametric, staŒsŒcal models usable by the di€erent control algorithms when reacŒng to impacts.

Commissioning engineer:this persona needs to run simulaŒon to determine opŒmal con•guraŒon of
operaŒonal installaŒon and assess performance. This also implies parameter idenŒ•caŒon to
match simulaŒon and reality.

3 IdenŒ•ed usage

Given the di€erent goals of the di€erent persona, there is not one single applicaŒon which can meet
all the requirements and work‚ows. For some cases one needs to perform just a few simulaŒon step
and vary parameters or iniŒal condiŒons, for others one need to run simulaŒons over a very long Œme
to esŒmate wear and tear. Therefore, so‰ware components must be designed to be integrated in vari-
able ways. In other words, we are considering several di€erent applicaŒons, all of which use the same
components, but each supporŒng a di€erent usage.

Here we idenŒfy the di€erent tasks, and the equipment and work‚ows required to ful•ll them.
Consider for instance the task of mathemaŒcal modeling and validaŒon of physics simulaŒons. This

requires equipping a lab environment with robots, sensors and objects to interact with and develop
control funcŒons that handle non-zero relaŒve velocity contacts, and of course, a way to store all that
data for subsequent analysis. In turn, the analysis involves model validaŒon and parameter idenŒ•caŒon
for instance.

This task is required for more than one of our personas since each needs validated models. That
would include theModel developerand Commissioning engineer. The results of this validaŒon are
then used by all personas in the context of other tasks.

Note that the same model is simulated for di€erent purposes, which means that there are mulŒple,
recon•gurable applicaŒons.

3.1 IdenŒ•ed work‚ows

The di€erent personas have di€erent aims when using the so‰ware components. This implies a work-
‚ow, i.e., a set of steps they need to realize in order to produce the results they need.

8

We have describe work‚ows for the personas de•ned above, and these will be used to moŒvate the
so‰ware integraŒon policies.

3.1.1 Work‚ow: Developing DS based moŒon planning

The persona concerned here is theController developerwho, in this case, uses techniques based on
Dynamical Systems (DS)s. These are di€erenŒal equaŒons which respond to the pose and velocity of
the end e€ector to produce commands that make it follow a desired trajectory. In di€erent scenarios
in the I.AM. project, the end e€ector comes into contact at non-zero relaŒve velocity with the semi-
structured and dynamic environment. The goal is to specify a DS that is robust to such changes.

{ Designing DSs

1. The experiment can be setup according to the scenario (TOSS, BOX, GRAB)

2. Given the iniŒal state of the robot from the simulaŒon and the desired •nal state, the moŒon
of the robot is controlled using a DS which sends and receives messages

3. The DS based moŒon can be directly tested with the simulaŒon

4. If the response to the DS control depends on the properŒes of the robot so the simulaŒon
helps understand the desired moŒon visually

{ Learning DSs

1. The experiment can be setup as previously

2. Data is collected for successful experiments with a variety of iniŒal con•guraŒons of the
robot

3. Desired •nal con•guraŒon and the velocity of the end e€ector to perform the task is learnt
using the data collected

4. The DS is updated with the learned data and is then used for online moŒon planning from
the iniŒal to the desired state of the robot

3.1.2 Work‚ow: Impact monitoring

The objecŒve here is to compare data from the impact monitoring algorithm running on a real robot
using sensors directly with data from the corresponding simulaŒon. Note that this can also be done in
the simulaŒon if adequate simulated sensors are available.

The work‚ow is as follow.

1. Setup the simulaŒon with validated parameters and prescribed iniŒal condiŒons

2. Run the simulaŒon using the same control algorithm as for the real robot

3. Collect the data from the simulaŒon which corresponds to that available on the real robot such
as encoder posiŒons and torque values (this is described in the Franka Emika interface
franka::RobotState [Gmb20])

4. As needed, augment this with addiŒonal informaŒon available in the simulaŒon but not directly
on the real robot

9

5. Run the impact monitoring on the simulaŒon

Note that in this context, the simulaŒon can be stripped down by disabling graphics for instance.
The last point allows for running the scenario very many Œmes, adding uncertainty by changing pa-

rameters, in order to test the robustness of the impact monitoring algorithm.
The simulaŒon Œme can be reduced by idenŒfying the approximate Œme locaŒon of impact, and

restart just before that point, and then varying the iniŒal condiŒons.
It should be possible to save simulaŒon data in a data •le, for later data analysis. For large datasets

HDF5 [Gro19] should be used.

3.1.3 Work‚ow: Developing control algorithms

There are of course other types of controllers besides DS. For instance,mcrtc contains task based
QP control methods. These must be tuned in di€erent ways, one involves large data sets with domain
randomizaŒon to improve robustness, much as in the case of impact monitoring. In fact, it is expected
that impact monitoring would be used in impact-aware controller development.

1. Setup experiment as previously

2. Setup simulated validaŒon experiment

3. Implement control algorithm

4. Generate syntheŒc data with simulaŒons

5. Analyze syntheŒc data to improve control algorithm

6. Deploy control algorithm in simulaŒon environment

7. Deploy control algorithm with real robot

8. Publish validated simulaŒons and results

We suggest a work‚ow which uŒlize both a physical and virtual lab. Also, large datasets containing
syntheŒc data must be stored in HDF5 with an agreed upon layout. Tools for manipulaŒng the data must
be produced.

3.1.4 Work‚ow: Development and validaŒon of simulaŒon models

The models we are considering here range from compliant joints to electric drivelines to sucŒon cups.
For all of these, new simulaŒon modules must be produced. Some can be built from exisŒng components
but some require enŒrely new mathemaŒcal model.

1. Setup experiment

2. Record real world behavior using a control algorithm when needed

3. Setup virtual lab to match the physical one

4. Run simulaŒon with the same control algorithm when relevant

5. Perform parameter idenŒ•caŒon

10

6. Construct mathemaŒcal models

7. Update the simulaŒon library

8. Distribute the validated simulaŒon model

This can be performed repeatedly to produce models of di€erent •delity, resoluŒon, and computa-
Œonal costs. Not all applicaŒons require the most advanced model.

3.1.5 Work‚ow: Method adapŒon for industrial applicaŒons

The •nal test is commissioning with real robots, but now with the aim of producing a reliable combina-
Œon of control and sensor algorithms to perform a task hopefully more reliably and faster than previous
installaŒons.

This would through an experimental stage for validaŒon of course.

1. Construct both a real and a virtual lab, both capable of compaŒble data collecŒon

2. Perform parameter idenŒ•caŒon to calibrate the simulaŒon as needed

3. Find a suitable control algorithm for the intended applicaŒon

4. Implement this in tools compaŒble with company policies

5. Integrate simulaŒon with exisŒng controller framework

6. Compare experimental data with virtual lab results

7. Test the performance of the hardware

8. Convert the real lab to a producŒon staŒon

9. Test •nal performance

Companies have policies regarding the use of so‰ware from third parŒes and restricŒons regarding
acceptable licenses. This must be addressed in our policies.

3.2 Required equipment

TheController developerandCommissioning engineerneed access to a lab for hardware in the loop
(HIL) tesŒng and to a virtual twin for simulaŒon in the loop (SIL) tesŒng. For theModel developer, at
least experimental data from a lab is needed.

3.2.1 Laboratory

A suitable lab must be equipped with the necessary robots, objects, sensors, cameras etc., and the
robots must have compaŒble interfaces to control libraries, preferably the main one used in I.AM.,
namely,mcrtc . Otherwise, adapters are needed. There must be a way to save data in binary form
in a commonly agreed format and layout. HDF5 is to be used for that.

11

3.2.2 Virtual lab

The virtual lab must contain virtual models of robots, both in terms of 3D graphics but also in terms of
physical properŒes. It must provide interfaces for the control libraries, but also for the forma‹ed data
produced in the lab as well as tools to manipulate and analyze it.

The virtual lab can operate in interacŒve mode with 3D graphics, allow for di€erent types of visu-
alizaŒon by communicaŒng kinemaŒc data to other applicaŒons such as RViz for instance, and support
dynamic plo“ng. Likewise, the virtual lab must provide for o„ine execuŒon as needed for parameter
searches, domain randomizaŒon, generaŒon of syntheŒc data, and learning experiments.

The robot models must provide for di€erent level of details so that simulaŒons can be sped up when
high •delity is not needed, or when tesŒng whether or not ‚exible joints are relevant for a parŒcular
applicaŒon.

The meaning of composiŒon here is that though joints are considered to be rigid in, say, a URDF
model, ‚exibility can be added to this without any interference with he basic model. The same goes
with sucŒon cups.

The con•guraŒon mechanism must make it easy to de•ne the signals to be exchanged between the
simulaŒon and the controller. Whether a robot is velocity, posiŒon or torque controlled is independent
of the robot model itself. The composiŒon strategy separates the con•guraŒon of components that are
orthogonal to each other, so one can choose the relevant signals for a given controller.

ComposiŒon avoids \copy-paste disasters" where an original model becomes modi•ed in di€erent
ways in di€erent applicaŒons. Also, this strategy aims at using naŒve formats instead of conversion
to a common format. If one needs to modify a URDF model, one uses standard tools for that. The
con•guraŒon loader performs necessary conversion and mapping to given simulaŒon libraries during
iniŒalizaŒon.

3.2.3 Cluster compuŒng

GeneraŒon of syntheŒc data via millions of virtual experiments. This too requires techniques for the
storage and manipulaŒon of data, as well as special scripts to launch jobs.

4 Requirements on so‰ware

This secŒon describes the funcŒonality of the so‰ware components required for the di€erent personas
to realize their respecŒve work‚ows, but also to easily incorporate on-going development from others
into their work. The aim is to allow everyone to focus on their work knowing that other components are
validated.

4.1 Fundamental integraŒon requirements

For our personas to be able to use the so‰ware on their workstaŒon, rely on the results and collaborate
with each other we de•ne a list of fundamental requirements.

For each work‚ow above, several so‰ware components are required and these must be assembled
in some sort of applicaŒon. The components must be integrated in some way to send and receive data
to and from each other. IntegraŒon can be done at the so‰ware library level, using di€erent APIs to
construct one main applicaŒon. But we need several applicaŒons each using di€erent subsets of the
components, each wiring them di€erently. This can lead to diƒculŒes.

12

However, integraŒon can be done in data-centric way. For this case, each separate library uses one
common API for a communicaŒon library and a small client applicaŒon is wri‹en. Such a client is gen-
erally very easy to write. For cases such as controller libraries which already support several commu-
nicaŒon protocols and transport layers, an adapter can be wri‹en if none of the exisŒng protocols is
suitable.

In the SIL context, it is important to have both synchronous and loss-free communicaŒon since de-
terminism can be lost otherwise. In the HIL context however, communicaŒon is usually asynchronous
and lossy. This is the case of CAN busses for instance. This hardly ma‹ers generally because the com-
municaŒon rates are very high, at 1KHz or 2KHz. For complicated systems, simulaŒons cannot always
achieve such speed.

A signals based applicaŒon needs some sort of master and as we discussed, this must be able to
run in di€erent modes for di€erent use cases. It is much easier to do that when using communicaŒon
protocols than with API bindings. One can have several masters, one for each applicaŒon, hopefully
reusing modules. Also, one can replace a module with a di€erent one having the same funcŒonality
by simply wriŒng a compaŒble client. The master is enŒrely oblivious of the parŒculars of any and all
modules.

A client-server architecture like the one described, based on signal, makes it easier to store simula-
Œon data since only the server needs to link to a library that can write forma‹ed data. Though HDF5 is
favored because of how well the data can be organized and annotated, wriŒng CSV •les is possible as
well.

Of course, this comes with some degree of complexity. GivenN so‰ware components we want to
use in a given applicaŒon, we needN client processes and one server one. These processes have to
be launched in the right sequence, made to wait unŒl everyone is ready, and the server must perform
checks to see if the modules have compaŒble messages. A reliable and comprehensive launcher for such
distributed applicaŒons is diƒcult to produce in the general case, but all the examples we have covered
so far require only simple scripts.

One can also do integraŒon by producing bindings to a scripŒng languages such as Python for each
of the di€erent modules. This is usually easier than working directly with the di€erent APIs inC++for
instance, but more diƒcult than the message based integraŒon, as one would need to write wrapper
APIs if di€erent libraries were used for the same tasks, viz, physics simulaŒon.

Central to this design is the speci•caŒon of which signals must be sent or received by each module,
and this must of course be kept in sync with the model de•niŒon. With the composiŒon model described
previously, this means that the list of signals is stored along the models they belong to, and can be
augmented as needed.

The simulaŒon models must be standalone and usable without any control framework if desired,
and must be declared using open format, or combined from exisŒng components available in open for-
mat. For instance, we have made extensive use of URDF in conjuncŒon with BRICK. See Sec. 7 for more
informaŒon.

4.2 So‰ware feature requirements

A number of features are required to support SIL, parameter idenŒ•caŒon, validaŒon of the simula-
Œons and hypotheses behind the controller designs, parameter search for controllers, and generaŒon
of syntheŒc data. Some of these features actually correspond to di€erent applicaŒons, or at least, a
polymorphic applicaŒon.

{ Easy to use applicaŒon launcher

13

{ Easy access to suitable control libraries

{ Synchronous mode simulaŒons for SIL

{ Support for mulŒple communicaŒon protocols

{ Support for URDF •les

{ Di€erent control modes: posiŒon, velocity, torque

{ ValidaŒon experiments

{ Parameter idenŒ•caŒon

{ Parameter opŒmizaŒon

{ GeneraŒon of syntheŒc, randomized data

{ Real-Œme mulŒbody simulaŒon supporŒng impacts and fricŒonal contacts

{ Open communicaŒon framework for integraŒon

{ O„ine and online simulaŒon mode

{ O„ine massively parallel simulaŒons

{ Saving simulaŒon data in HDF5

{ SupporŒng scripts for HDF5 data

4.3 Requirements on so‰ware maintenance

Any component with aC++code base or Python bindings should be able to integrate and communicate
with the others in the framework. Of course, any component which can communicate over an internet
protocol can be integrated as well.

CompaŒble components are required to have stable releases which then can be documented for
future reproducŒon of the results using them. They should also comply with standard release manage-
ment and conŒnuous integraŒon pracŒces, including revisioning, unit, and integraŒon tesŒng.

5 User experience

Even though several so‰ware packages are required for any one of our personas, users should be able to
install everything with just one operaŒon. They should also expect rigorous adherence by the developers
to standard development pracŒces with respect to release management, tesŒng, documentaŒon and
bug reporŒng.

In parŒcular, the user should expect the following.

{ Release management and conŒnuous integraŒon of all components

{ IntegraŒon tesŒng for full system releases

{ Standard binary packages for installaŒon on a set of supported plaŠorms

14

{ Docker containers for other plaŠorms

{ Open source modeling framework

{ Seamless switch between SIL and HIL

{ Python as runŒme environment for access to data handling and processing tools

{ A generic data format based on HDF5 for storing experimental and syntheŒc data

Releasing binaries compaŒble with naŒve package managers on Linux distribuŒons provides the best
user experience. The same can be done on Mac OS X. Ideally, there should be very li‹le if any hand
intervenŒon when installing the required packages. Because several non-standard packages might be
involved, release via self-contained Docker images is also supported. This requires nearly no con•gura-
Œon by the user.

This being a GitLab centric project, users can of course clone the repository and compile themselves.

5.1 Introducing the concept of GLUE

To meet the user descripŒons, requirements and idenŒ•ed work‚ows a development of a Python frame-
work which implements the requirements was started. We decided to call the set of compaŒble so‰-
ware components for impact-aware manipulaŒon \GLUE". The type of glue we have in mind here is the
prototyping kind which is used when building experimental mock-ups as components can be replaced
dynamically. Since the objecŒve is to support mulŒple applicaŒons from parameter idenŒ•caŒon to
syntheŒc data, and recon•gure from SIL to HIL, GLUE is not a framework, nor is it an applicaŒon.

We are considering renaming this to contain RACK in the name. The RACK we think of is that used
for either modular synthesizers or complicated lab setups. This is because using patch cables, one can
re-route signals in di€erent ways and transform the funcŒon of the connected devices.

5.2 Accessability

Users of GLUE can clone the Git repository, and then choose between a full installaŒon if they are on a
clean Ubuntu 20.04 system, or pull the latest Docker container, which is built by the GitLab runners. At
the moment the Git repository is being maintained by Algoryx. Users of GLUE should be able to exchange
their work and repeat each others' experiments.

5.3 Version control

Maintainers of so‰ware modules used in GLUE should try to support backward compaŒbility. Models
should include the version number against which they were developed and the range of version number
against which they can run successfully.

5.4 Commercial so‰ware

We cannot make an assumpŒon that all involved so‰ware packages are open source. For example AGX
Dynamics is distributed in binary form and requires a yearly license fee. So we have to assume users
of GLUE can access personal licenses of all commercial so‰ware required. What is done to minimize
fricŒon is that a license to AGX Dynamics is built into the Docker Container, which has a builŒn valid,
Œme limited license. This will allow users connected to the project to use the library without making an
immediate purchase.

15

5.5 Data formats

Instead of having one framework that can do everything, GLUE enables any so‰ware component to be
part of a speci•c soluŒon. By using open formats and protocols with automaŒcally generated messages
from model de•niŒons, controller, simulaŒon libraries, visualizaŒon frameworks and other components
can be replaced easily. Of course the detailed behavior will change depending on which simulaŒon
library is used, which numerical Œme integraŒon method and which solver is chosen within same. Details
of fricŒon models and solvers, the availability of certain types of models such as joint fricŒon and ‚exible
joints can limit funcŒonality. Nevertheless, this kind of polymorphism is useful.

6 So‰ware components of GLUE

GLUE is meant to connect a number of components together with thin interfaces. We follow the Unix
philosophy here: \do one thing but do it well". Here we list the current choices of components, formats
and protocols.

6.1 CommunicaŒon: CLICK

CommunicaŒon protocols used on hardware work at high frequency, in the kilohertz range, and are gen-
erally lossy. Control modules are designed for such protocols. To communicate with a simulaŒon and to
guarantee determinism however, it is necessary to have a client which bu€ers messages and guarantee
that no frame boundary is missed. The frame boundary here is connected to the •xed integraŒon step
used in the simulaŒon.

The need for an intermediate library to establish synchronous communicaŒon became clear as Al-
goryx worked on projects with di€erent robot manufacturers. The result is CLICK, that will soon (before
mid 2023) be released as open source. CLICK is communicaŒon layer built on top of ZeroMQ1, a widely
used open-source messaging library. Like anything ZeroMQ, CLICK is lightweight and fast, and works
on all operaŒng systems. CLICK has been used by Algoryx' customers by wriŒng a small adapter layer
to bridge with their own proprietary communicaŒon transport layer and protocol. It also has a Python
interface, namely, pClick.

There are plans to implement alternaŒve transport layers for CLICK, replacing ZeroMQ with the
Robot OperaŒng System2 (ROS). ROS includes two communicaŒon protocols, ROS and ROS2. Both im-
plement \nodes" and follow a publisher-subscriber model. They di€er in the transport layer. This is not
synchronous per se which is why an adapter is needed.

6.2 SimulaŒon model de•niŒon

Models of robots de•ned with URDF [Rob20] •les are widely and freely available. They can be used
directly in the GLUE simulaŒon framework. The list of messages going to and from the control module
are read directly from the robot de•niŒon thanks in part to comprehensive support for ROS and URDF
in the QP robot control frameworkmcrtc , developed by the partner CRNS.

However, the URDF format has limitaŒons. It only supports ideal joints, not ‚exible ones, it does
not have any noŒon of ‚exible or so‰ elements (e.g., a sucŒon cup), and it cannot easily handle closed

1https://zeromq.org/
2https://www.ros.org/

16

kinemaŒc loops. And of course, de•niŒon of material properŒes for contacts are not included. That is
before we start discussing simulated sensors.

We need to look further to ful•ll the modeling requirements.
In D5.1, Universal Scene DescripŒon (USD)3 was menŒoned as a good candidate declaraŒve physics

modeling. This has been invesŒgated at Algoryx and the conclusion is that it is inadequate. Despite
USD providing great features for 3D authoring and animaŒon, it does not support simulaŒon in a naŒve
way. NVidia did manage to introduce physics simulaŒon but that e€ort is far from complete and applies
only to their own physics simulaŒon library, namely, PhysX. Mapping the AGX API to this would be a
monumental e€ort and is a big commercial risk. Therefore, Algoryx decided to not invest in supporŒng
USD in the foreseeable future.

6.3 A new soluŒon: BRICK

During the I.AM. project Algoryx has been developing a new open declaraŒve format for physics model-
ing. This is called BRICK and is a schema based on a subset of YAML4 which makes the con•guraŒon •les
human readable and editable. The semanŒcs of the declaraŒve statements is not directly connected to
the AGX Dynamics API and it is possible to write backends to support other nowadays popular simulaŒon
toolkits such as Bullet Physics or MuJoCo, for instance.

The BRICK semanŒcs is polymorphic and split into speci•c bundles, e.g., Physics, Mechanics, RoboŒcs.
These are developed for generic modeling of simulaŒon environments. Inside each bundle, the termi-
nology is adapted to the speci•c domain and the backend then maps these to the speci•c API elements
of, e.g., the AGX Dynamics library. For instance, in the roboŒcs community, it is more common to say
\link" instead of \rigid body".

The bundles come with a data driven runŒme module, currently wri‹en inC#, which can be inte-
grated to anyC#or Python simulaŒon framework5. BRICK.RoboŒcs can serve as a layer on top of the
URDF de•niŒon and augment the physics with essenŒal models of IMU sensors, ‚exible sucŒon grippers,
along with respecŒve command and signal de•niŒons to be used by CLICK explained below in Sec. 6.1. By
integraŒng BRICK, GLUE bene•ts from a modeling format with reusable components, which can be used
to compose simulaŒon environments with a hierarchial methodology. Users can reuse what others have
declared, and then extend parts of the de•niŒon, like augmenŒng the sucŒon gripper to be ‚exible, or
joint motors to have internal fricŒon. BRICK also comes with a runŒme called AGXBrick | the backend
| which instanŒates the simulaŒon models in AGX Dynamics. This means that users of GLUE need not
code anything to get started with their work.

The design of BRICK includes data typing and inheritance by composiŒon. A BRICK •le can contain a
reference to a URDF •le. The la‹er is parsed and converted to the BRICK semanŒc, and this can then be
augmented with features available in AGX Dynamics which cannot be de•ned in the URDF schema.

6.4 CommunicaŒon protocol

The list of commands to send and signals to read are de•ned in the simulaŒon model •les. A handshake
at startup tests if the controller and model have compaŒble signals.

By using Python as a runŒme, also the funcŒonality in the AGXBrick Python module can be uŒlized,
including rese“ng the scene in variable con•guraŒons enabling parameter search and domain random-

3https://graphics.pixar.com/usd/docs/index.html
4yaml.org
5Algoryx is currently working on a rewrite of Brick inC++to enable a wider range of possible frameworks for integraŒon.

17

izaŒon. When launching the simulaŒon models using AGXBrick instead of the CLICK runŒme, the robots
can also be controlled asynchronously over ROS or ROS2. The BRICK simulaŒon models then need to
be extended with ROS topics for signals that are not part of the URDF de•niŒon. However, the asyn-
chronous messaging will not be determinisŒc in general.

6.5 Control framework

The mcrtc control framework developed by CNRS have implemented a CLICK client, called mcclick.
The control sequences wri‹en with mcrtc can then be launched either to control the real robot or
simulaŒon, meaning that it supports both SIL and HIL. Similarly, other (open-source) QP control robot
libraries could be employed in the future by implemenŒng a suitable CLICK client.

6.6 SimulaŒon framework and runŒme

For impact-aware controllers to receive accurate sensor feedback from the simulaŒon, comparable with
the real robot sensors, the simulaŒon framework need to support non smooth real Œme simulaŒon with
accurate force calculaŒons. This is exactly what AGX Dynamics does. However, AGX Dynamics comes
with a C++ API accessible from Python, and no GUI for authoring. Therefore the choice for the simu-
laŒon runŒme to depend on AGXBrick and AGXClick enables single instrucŒon execuŒon of simulaŒon
environments, with synchronous communicaŒon and no coding needed since all choices, con•guraŒons
and funcŒonality are built into the model •les.

Note that a comprehensive applicaŒon launcher is beyond the scope of this project. Indeed, a GLUE-
centric simulaŒon generally involves mulŒple processes distributed over mulŒple computers communi-
caŒng over agreed-upon ports. Each process must be started on a designated machine and in the right
sequence. We wrote special purposes launchers but this problem must be addressed in more generality.

7 Working with GLUE

A Git repository has been set up to ful•ll the requirements listed above. In this secŒon we give a taste
of a few snapshots from the current implementaŒon and usage.

7.1 I.AM. BRICK •les

The GLUE framework supports at least the following use cases: (i) real Œme simulaŒons with a QP con-
troller or (ii) o„ine simulaŒons for parameter idenŒ•caŒon or (iii) generaŒon of syntheŒc data with
batch jobs. The simulaŒon models need to be mulŒpurpose so that they can be used for both cases.
Same model, di€erent applicaŒons.

There is a model catalogue including the available robots, objects for manipulaŒon, conveyor belts
and the pairwise interacŒon de•niŒons. A simulaŒon environment can be composed using any combi-
naŒon of these models, and used for either of the above menŒoned cases. Both the models and the
simulaŒon environment, which is also a BRICK model, are based upon I.AM. speci•c template models.

I AM SIMULATION:
. ex tends: P h y s i c s . Component

e x i t t h r e s h o l d l i n e a r :
. doc: >

18

A t h r e s h o l d f o r l i n e a r v e l o c i t i e s used as an end c o n d i t i o n .
[m/ s]

. type: Rea l

. va lue: 0 .001

e x i t t h r e s h o l d a n g u l a r:
. doc: >

A t h r e s h o l d f o r angu la r v e l o c i t i e s used as an end c o n d i t i o n .
[rad / sec]

. type: Rea l

. va lue: 0 .01

e a r l y e x i t c o n d i t i o n s:
. doc: >

L i s t o f f u n c t i o n s to t e s t i f the s i m u l a t i o n shou ld
do an e a r l y e x i t . Examples:
' fallen_below_floor ' ,
'zero_velocity ' ,
'zero_relative_conveyor_velocity ' .
Note: A l l b a t c h o b j e c t s w i l l be t e s t e d .

. type: L i s t< S t r i n g>

. va lue: []

t ime s tep:
. type: Rea l

s i m u l a t i o n t i m e :
. type: Rea l

7.2 Batch jobs

The example above shows BRICK declaraŒons extending aPhysics.Component, the most basic
Brick.Physics scene, with thresholds and exit condiŒons for batch simulaŒons. Snapshot of the low-
est level template for a simulaŒon environment in I.AM.The real Œme simulaŒon applicaŒon does of
course not need to use the a‹ributes that does not make sense, and vice versa. Each a‹ribute can be
overridden in any model extending the IAM SIMULATION model.

A case speci•c simulaŒon environment template is as follows

I AM TOSSBOX CONVEYOR:
. ex tends: I AM SIMULATION
box:

. type: CardboardBox

conveyor:
. type: LabConveyor

19

e a r l y e x i t c o n d i t i o n s :- f a l l e n b e l o w f l o o r- z e r o v e l o c i t y # if fallen on ground- z e r o r e l a t i v e c o n v e y o r v e l o c i t y # if fallen on

conveyor successfully

which extends I AM SIMULATION and defines a box and a conveyor in the scene. Then there are severalexamples on how this scene is extended further depending on which box to toss, and which conveyorto land on.
TossScene :

. extends : I AM TOSS BOX CONVEYOR
conveyor :

. va lue : LabConveyor
speed : 1
d i r : Vec3 (1 . 5 , 0 , 0)
l e n g t h s : [2 . 5 5 , 1 . 0 , 0 . 8 4]
l o c a l T r a n s f o r m :

p o s i t i o n : Vec3 (−0 . 3 3 , − 1 . 9 , 0 . 4 2)
r o t a t i o n : Math . E u l e r A n g l e s (0 , 0 , −Math . P I * 0 . 5)

TossSceneBox4 :
. extends : T o s s S c e n e
box:

. va lue : Box4
l o c a l T r a n s f o r m :

p o s i t i o n : Math . Vec3 (− 0 . 3 , 0 . 2 , 0 . 7)
TossSceneBox5 :

. extends : T o s s S c e n e
box:

. va lue : Box5
l o c a l T r a n s f o r m :

p o s i t i o n : Math . Vec3 (−0 . 2 0 7 4 , 0 . 2 0 4 0 , 0 . 6 9 6 7)
The batch functionality of GLUE allows for loading one of the TossScenes with a set of initial conditionscollected from real world recordings, simulate for a chosen amount of time, and then reset the scene atthe next initial state. The result of the toss batch simulations is a large set of recordings, which are usedas input to a postprocessing algorithm currently implemented in MATLAB.A future feature is to load the batch job with a controller in the loop, also with online parametersearch, instead of the current offline parameter search done with MATLAB.
7.3 Dynamical System based Mo�on Planning

As explained in Section 3.1, DS based motion planning can be extended to be impact-aware. A dynamicalsystems provides the rate of change of state variables and hence its output can be sent to the controllers.Currently the DSs are implemented as standalone C++ libraries with CMake support. Some inter-facing was implemented so the libraries can be called by mc rtc through its components. For now, the
20

dynamical systems are independent of the robot. Different DSs can be used to generate the desiredmotion and the controller takes care of the joint limits, velocity limits, collisions etc. Creating DSs as astand alone library makes the system modular and easy to use. The DS framework can also interact withthe controller framework and the simulation framework through CLICK communication, separate from
mc rtc, though this will not be implemented in this project. The data that a DS would need either tolearn the motion, or the desired final state of the robot can be easily generated through the simulationframework. For designing DS based motion which are robot dependent, for e.g., motions that are de-pendent on robot’s inertia, or other metrics, the DS framework independently has access to the robot’sURDF and will exist as a stand alone library. This modularity allows for adding different dynamical sys-tems, systematically understanding their behavior with and without the control system, and understandhow they lead the robot to interact with the environment through the simulation framework as theyimplement non-smooth interaction models.
7.4 Architecture

Figure 1 illustrates the content of the Docker container including all components needed for running theintegrated software components we call GLUE.

Figure 1: I.AM. integration architecture.

21

Figure 2: I.AM. integration architecture with controller framework outside docker.
The simulation model files and the Python applications that implement the logic for impact-aware ma-nipulation within the I.AM. project are placed in a Docker Volume6 which allow for updating the modelsand applications. To introduce something like a new controller, we suggest that the controller frameworkis built and running native on the machine of the developer, see Figure 2. The other parts of GLUE arestill maintained in the container. The developer may distribute the controller as an executable, withinthe GLUE repository, for others to be able to reuse the work. As long as a software component commu-nicates using CLICK, by implements a client as done for the mc rtc controller framework, componentsoutside of GLUE can be integrated in the runtime.
7.5 Screenshots of run�me

Figure 3 shows the instruction to load one of the examples of GLUE with Python next to the web viewerused for visualizing when the simulation runs in the Docker container. Figure 4 shows the simulationin a later state when the robot has picked up the box before it is being tossed. Some details about thecommunication between the simulation and the controller is visible in the terminal next to the 3D visual.

6https://docs.docker.com/storage/volumes/

22

https://docs.docker.com/storage/volumes/

	EXECUTIVE SUMMARY
	Introduction
	Identified personas
	Identified usage
	Requirements on software
	User experience
	Software components of GLUE
	Working with GLUE
	Conclusion
	REFERENCES

