
Impact-Aware Manipulation by Dexterous Robot Control and Learning in
Dynamic Semi-Structured Logistic Environments

I.Learn Report

Dissemination level Public (PU)

Work package WP2:Learning

Deliverable number D2.2

Version F-1.0

Submission date 02/10/2023

Due date 30/09/2023

www.i-am-project.eu

This project has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No. 871899



Authors
Authors in alphabetical order

Name Organisation Email

Aude BILLARD EPFL aude.billard@epfl.ch

Michael BOMBILE EPFL michael.bombile@epfl.ch

James HERMUS EPFL james.hermus@epfl.ch

Elise JEANDUPEUX EPFL elise.jeandupeux@epfl.ch

Harshit KHURANA EPFL harshit.khurana@epfl.ch

Ahmed ZERMANE CNRS ahmed.zermane@lirmm.fr

Control sheet
Version history

Version Date Modified by Summary of changes

0.1 15/05/2023 Jos DEN OUDEN TOC & first contents

0.11 18/06/2023 Michael BOMBILE General structure and first content

0.12 01/09/2023 Michael BOMBILE Updated Sections 2.2.3, 2.3.2,
2.3.3

0.13 02/09/2023 Harshit KHURANA Updated Sections 2.2.1, 2.2.2, 2.3.1

0.14 05/09/2023 Michael BOMBILE Finished Sections 2.2.3, 2.3.2,
2.3.3

0.14 05/09/2023 Harshit KHURANA Finished Sections 2.2.1, 2.2.2, 2.3.1

0.14 05/09/2023 Elise JEANDUPEUX Updated Section 2.5

0.15 06/09/2023 Michael BOMBILE Updated and Finished Section 3

0.15 06/09/2023 Aude BILLARD Corrections and comments

0.2 14/09/2023 James HERMUS Updated Section 2.4

0.3 23/09/2023 Ahmed ZERMANE Updated Section 2.2.4

0.8 25/09/2023 Michael BOMBILE Peer-review comments addressed

0.9 28/09/2023 Michael BOMBILE Revised version ready for submis-
sion, quality check

1.0 02/10/2023 Jos DEN OUDEN, Alessandro SACCON Revised version ready for submis-
sion, quality check

Legal disclaimer
The information and views set out in this deliverable are those of the author(s) and do not necessarily
D2.2 - I.Learn Report 1 H2020 EU project I.AM. (No. 871899)



Peer reviewers

Reviewer name Date

Reviewer 1 James HERMUS 06/09/2023

Reviewer 2 Aude BILLARD 06/09/2023

Reviewer 3 Maarten JONGENEEL 22/09/2023

reflect the official opinion of the European Union. The information in this document is provided “as is”,and no guarantee or warranty is given that the information is fit for any specific purpose. Neither theEuropean Union institutions and bodies nor any person acting on their behalf may be held responsiblefor the use which may be made of the information contained therein. The I.AM. Consortium membersshall have no liability for damages of any kind including without limitation direct, special, indirect, orconsequential damages that may result from the use of these materials subject to any liability which ismandatory due to applicable law. Copyright© I.AM. Consortium, 2020.

D2.2 - I.Learn Report 2 H2020 EU project I.AM. (No. 871899)



TABLE OF CONTENTS

EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 I.AM. project background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 I.Learn background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Purpose of the deliverable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Intended audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 SUMMARY AND RESULTS OF I.LEARN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 I.AMWP2 objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Task 2.2 Impact Posture Generator for Dynamic Manipulation: Overview of publications 9
2.2.1 Publication: “Learning to Hit: A statistical Dynamical System based approach” . . . . 9
2.2.1.1 Approach Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1.2 Limitations and Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Publication: “Motion Planning and Inertia Based Control for Impact Aware Manipu-

lation” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2.1 Approch Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2.2 Limitations and Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Publication: “Bimanual dynamic grabbing and tossing of objects onto amoving target” 12
2.2.3.1 Approach Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3.2 Main achievements, Limitations, and Future perspectives . . . . . . . . . . . . . 13
2.2.4 Publication: Planning Impact-Driven Logistic Processes . . . . . . . . . . . . . . . . 14
2.2.4.1 Approach Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4.2 Main achievements, Limitations, and Future perspectives . . . . . . . . . . . . . 16
2.3 T2.3 Learning of Impedance andDynamical Systems for Controlwith Impacts: Overview

of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Publication: “Learning to Hit: A statistical Dynamical System based approach” . . . . 18
2.3.1.1 Summary of main achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1.2 Limitations and Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Publication: ”Dual-arm control for coordinated fast grabbing and tossing of an ob-

ject: Proposing a new approach” . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2.1 Approach Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2.2 Main achievements, Limitations and Future perspectives . . . . . . . . . . . . . . 19
2.3.3 Publication: “Bimanual dynamic grabbing and tossing of objects onto amoving target” 21
2.3.3.1 Approach Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3.2 Main achievements, Limitations and Future perspectives . . . . . . . . . . . . . . 24
2.4 Ongoing Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Ongoing: “Learning impedance modulation for impact-aware manipulation” . . . . 26
2.5 List of I.Learn Softwares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.1 Single-arm controller for hitting an object . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.2 Dual-arm controller for grabbing and tossing an object . . . . . . . . . . . . . . . . 28

3 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

D2.2 - I.Learn Report 3 H2020 EU project I.AM. (No. 871899)



4 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

D2.2 - I.Learn Report 4 H2020 EU project I.AM. (No. 871899)



ABBREVIATIONS

Abbreviation Definition

EC European Commission

PU Public

WP Work Package

DS Dynamical System

D2.2 - I.Learn Report 5 H2020 EU project I.AM. (No. 871899)



EXECUTIVE SUMMARY

This DeliverableD2.2 (I.Learn report) presents anoverviewof the publications associatedwith the I.Learn
framework. It focuses particularly on tasks T2.2 and T2.3 and provides summaries of each paper’s con-
tributions to each considered task. It highlights the main achievements and discusses the limitations
and future directions.
Apart from the executive summary and the conclusion, the report has twomain parts built around tasks
T2.2 and T2.3 dealing respectively with the determination of postures that prepare robots to generate
impacts or release events, and learning impedance and dynamical systems to control impact tasks. Thus,
in the first part, the report presents the summary of three publications associated in particular with the
generation of the desired impact states, the postures necessary for a desired momentum exchange in
hitting tasks, and then the generation of tossing postural states with a dual-arm system. In the second
part, the report summarizes publications (four) associated with the design of dynamical systems used
for the robust generation of impact, grabbing, and tossing motion.
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1 INTRODUCTION

1.1 I.AM. project background

Europe is leading the market of torque-controlled robots. These robots can withstand physical interac-
tion with the environment, including impacts, while providing accurate sensing and actuation capabili-
ties. I.AM leverages this technology and strengthens European leadership by endowing robots to exploit
intentional impacts formanipulation. I.AM focuses on impact awaremanipulation in logistics, a newarea
of application for robotics which will grow exponentially in the coming years, due to socio-economical
drivers such as booming of e-commerce and scarcity of labour. I.AM relies on four scientific and techno-
logical research lines that will lead to breakthroughs in modeling, sensing, learning and control of fast
impacts:

1. I.Model offers experimentally validated accurate impact models, embedded in a highly realistic
simulator to predict post-impact robot states based on pre-impact conditions;

2. I.Learn provides advances in planning and learning for generating desired control parameters
based on models of uncertainties inherent to impacts;

3. I.Sense develops an impact-aware sensing technology to robustly assess velocity, force, and robot
contact state in close proximity of impact times, allowing to distinguish between expected and
unexpected events;

4. I.Control generates a framework that, in conjunctionwith the realisticmodels, advanced planning,
and sensing components, allows for robust execution of dynamic manipulation tasks.

This integrated paradigm, I.AM, brings robots to an unprecedented level of manipulation abilities. By
incorporating this new technology in existing robots, I.AM enables shorter cycle time (10%) for applica-
tions requiring dynamic manipulation in logistics. I.AMwill speed up the take-up and deployment in this
domain by validating its progress in three realistic scenarios: a bin-to-belt application demonstrating ob-
ject tossing, a bin-to-bin application object fast boxing, and a case depalletizing scenario demonstrating
object grabbing.

1.2 I.Learn background

I.Learn is the I.AM framework aimed at generating for robots feasible dynamic motions with velocity
jumps. It offers a learning-based technology for optimizing pre-impact velocity and posture to achieve
post-impact velocities aligned with desired dynamic manipulation objectives, such as hitting, tossing,
boxing, or grabbing. This framework is intended to provide reference motions, optimal impedance, task
priorities, and contingency plans for fault recovery strategies.

The I.Learnmodels will be validated on the basis of their ability to generate feasible and computationally
faster impact postural states than standard approaches. Moreover, their robustness and real-time abil-
ity to adapt to several disturbances of the impact-aware manipulation tasks will be verified in realistic
experiments.

D2.2 - I.Learn Report 7 H2020 EU project I.AM. (No. 871899)



1.3 Purpose of the deliverable

The objective of this deliverable D2.2 (I.Learn report) is to present a comprehensive overview of re-
search papers associated with the I.Learn framework. This document offers a concise summary of the
main results and algorithmic approaches outlined in these papers. It further highlights the primary ac-
complishments, limitations, and prospective directions related to I.Learn (T2.2 and T2.3).

1.4 Intended audience

The dissemination level of D2.2 is “public” (PU) –meant for members of the Consortium (including Com-
mission Services) and the general public. This document is designed to also serve as an internal commu-
nication for the entire I.AM consortium by providing information on the developments and publications
associated with I.Learn.

D2.2 - I.Learn Report 8 H2020 EU project I.AM. (No. 871899)



2 SUMMARY AND RESULTS OF I.LEARN

2.1 I.AMWP2 objectives

We recall that I.AM. project objectives related to WP2 (Learning) are:

OBJ2.1 Learning models of impacts and of object’s dynamics resulting from impact, based on high-
resolution simulation from Model;

OBJ2.2 Compute postures that prepare the robot to generate impacts and release events with its sur-
rounding with an outcome that is aligned with the user-specified dynamic manipulation goals;

OBJ2.3 Learning robot controller for different types of impact: swiping, tossing, grabbing, boxing;

OBJ2.4 Learning of QP-parameters for multi-contact planning under stability constraints

This deliverable D2.2 mainly focuses on the second and third objectives (OBJ2.2 and OBJ2.3) which con-
cern the generation of impact postural states and the design of impact task controllers, respectively.

2.2 Task 2.2 Impact Posture Generator for DynamicManipulation: Overview of publications

The aim of this task is to devise an impact posture generator for dynamic manipulation. It allows to
determine what pre-impact posture and speed a robot has to take in order to achieve a desired post-
impact speed in the task space. In other words, given the initial state (pose and velocity) of a robotic
system, the goal is to find a state trajectory along which the robot will be steered to a given desired
impact location and velocity.

The impact task, unlike the positioning task, is characterized by a transitory state along a trajectory and
cannot be solved with a static posture generator. Its problem formulation using standard optimization
tools would lead to a semi-infinite programming (SIP) problem that is known to be hard to solve effi-
ciently and certainly not in real-time. To address this problem, two possible approaches have been con-
sidered in T2.2, as reported in Deliverable D2.1. The first is a data-driven approach that generates impact
postural states from simulated experiments of the intended use-cases. The second approach combines
planning and optimization and decouples each impact problem into two main phases: (i) planning the
desired impact state from the intended task (use-case) and (ii) planning the reaching of the desired im-
pact state.

Although some technical details related to T2.2 were previously reported in Deliverable 2.1 and Deliver-
able 5.3, this section summarizes the most important results of publications associated with T2.2.

2.2.1 Publication: “Learning to Hit: A statistical Dynamical System based approach”

2.2.1.1 Approach Summary

This paper [1] proposes a manipulation scheme based on learning the motion of objects after being hit
by a robotic end-effector. The motion of the object after being subjected to a hitting force or an impulse
is hard to predict due to numerous reasons. The reasons can be modelling difficulties such as friction
which depends onmicroscopic interations of the object and the sliding surface, coefficient of restitution
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(a) (b)

Figure 1: (a) Design intuition for the dynamical system (DS) as a motion generator. The end-effector (EE)
moves toward its projection on the desired direction and a constant flow is added. The effect of the
two different flows is controlled by a weighting parameter, which depends on the distance of the end
effector from its projection. (b) The vector field showing the flow of the end effector as in Eq. 1. The
red marker shows the position of the object that needs to be hit. The figure also shows three different
paths the robot takes from three different initial positions (in orange, green and black)

and, the contact between the robot and the object. Furthermore the control systemhas its uncertainties
in following the desired trajectory to hit the box and this can lead to errors in where the box is being
hit. This leads to simple Newtonian model to be prone to errors in predicting the motion of the object
after being subject to an impulse. An estimate of the object dynamics under friction and collisions is
learnt and used to predict the desired hitting parameters (speed and direction), given the initial and
desired location of the object. The learning method is presented in 2.3.1. Based on the obtained hitting
parameters, the desired pre-impact velocity of the end-effector is generated using a stable dynamical
system of the form

χ̇ = f(χ) = α(χ)χ̇∗ + (1− α(χ))[A(χ− χv)] (1)

where χv is projection of the end effector’s position on the hitting line, α(χ) is the weighting factor
between the two components of the dynamical system: first that drives the robot at the desired speed
and second, that drives the robot towards the hitting line.
This allows for the object to be positioned at a desired location outside the physical workspace of the
robot.

2.2.1.2 Limitations and Future perspectives

From themotion planning perspective, we generate amotion using a dynamical system. Thismotion cur-
rently requires us prior understanding of what end-effector velocities are possible. Since the achievable
velocities of the robot are dependent on its configuration, achieving a desired speed and a desired iner-
tia needs to be designed carefully. We are working on achieving this through an optimisation problem
which will be implemented in the next work.

D2.2 - I.Learn Report 10 H2020 EU project I.AM. (No. 871899)



2.2.2 Publication: “Motion Planning and Inertia Based Control for Impact Aware Manipulation”

2.2.2.1 Approch Summary

In this paper, we propose a metric called hitting flux which is used in themotion generation and controls
for a robot manipulator to interact with the environment through a hitting or a striking motion. The pro-
cess of collision is an exchange of momentum between the colliding objects and hence the post-impact
state of the object being hit depends on the inertia of the robot, speed of the robot and its own iner-
tia. Given the task of placing a known object outside of the workspace of the robot, the robot needs
to come in contact with it at a non-zero relative speed. The configuration of the robot and the speed
at contact matter because they affect the motion of the object. The physical quantity called hitting flux
depends on the robot’s configuration, the robot speed and the properties of the environment. We com-
bine maximising manipulability metric with control of directional inertia to achieve the desired hitting
flux. Maximising manipulability allows the robot to achieve high end effector velocities. This is ensured
by prioritizing the configurations that have high velocity manipulability metric, along the hitting direc-
tion, ĥ ∈ R3. For achieving desired directional inertia, the joint configuration is allowed to move in
the Null Space of the motion task. This changes the joint velocities towards the configuration with the
desired directional inertia if the redundancy allows for it.
Thus, the described control system leading to directional inertia values close enough to the desired
values, with the speed of the robot being controlled by a torque-based velocity tracking controller, allows
us to achieve the desired hitting flux. The bloc diagram for the hitting system is depicted in Figure 2.

Figure 2: The figure depicts the block diagram for the hitting system.

2.2.2.2 Limitations and Future perspectives

From the control perspective, it requires us prior understanding of what directional inertia values are
possible due to the initial configuration of the robot. Currently, the formulation of the hitting flux in
terms of directional inertia has a few assumptions on the numerical values in the inertia matrix. This
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can be further generalized by using effective inertia in the hitting flux, which can further utilize the Null
Space in the joint space of the robot. This will also be implemented in our upcoming work. Secondly,
we assume the coefficient of restitution as a given parameter, and to overcome this we are looking into
different learning procedures.

2.2.3 Publication: “Bimanual dynamic grabbing and tossing of objects onto a moving target”

2.2.3.1 Approach Summary

As part of this publication [3], a framework that focuses on the computation of robot posture for dynamic
release tasks with a dual-arm robot was proposed. More precisely, this posture generator algorithm
enables a dual-arm robotic system to toss precisely a grabbed object onto amoving target. The proposed
framework addresses the problem of explicit computation of the tossing parameters of the object and
more importantly their corresponding robot postural states.

Figure 3: Illustration of dual-arm robotic depalletizing task with fast grabbing and tossing of an object
(blue) onto a moving target (yellow). The overall motion can be split into three main phases; the free
robot motion, the constrained robot–object motion, and the object free-flying motion before intercep-
tion of the target at landing. The initial robot’s posture is shown in dark grey whereas a release posture
achieving the task is illustrated in light grey

An illustration of the posture generation task of a dual-arm robot in a depalletizing task is given in Fig-
ure 3. Given the desired landing position for the object, the proposed algorithm estimates the release
parameters necessary to throw the object at the desired landing location. Estimating the release param-
eters is nothing but solving the inverse throwing problem that consists of determining a feasible release
state leading to the desired landing state. To that end, we developed a mixed learning-optimization
method that computes feasible release positions and velocities of the object and their associated pos-
tural states of the robot. To address the redundancy problem inherent to the throwing task, we adopted
a strategy that seeks solutions yielding minimum throwing efforts. Hence, using Gaussian mixture re-
gression (GMR) and data from the object’s free-flying dynamics with nonlinear drag, we learned an
inverse throwing map that generates minimum release velocities of the object for given relative release
positions (relative to the landing position). Then, this learnedmap is embedded into a kinematics-based
bi-level optimization that computes the associated postural release states of the dual-arm robot while
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enforcing the feasibility constraints both in position and velocity and also the dual-arm coordination
constraints necessary to maintain the grasp of the object. The proposed approach is summarized in
Figure 4.

Figure 4: Illustrationof themixed learning-optimizationmethod that computes feasible release positions
and velocities of the object and their associated postural states of the robot. The bi-level optimization
runs iteratively and computes at the top level the robot’s feasible release velocity closest to theminimum
velocity predicted by the inverse throwing map at the current configuration. At the bottom level, the
algorithm computes joint accelerations leading to configurations minimizing the difference between
the previously obtained feasible release velocity and the prediction of the inverse throwing map. The
algorithm also enforces not only the joint position and velocity limits, but also the dual-arm coordination
constraints necessary to maintain the grasp of the object.

2.2.3.2 Main achievements, Limitations, and Future perspectives

The posture generator presented in the publication [3], although developed for tossing tasks with a
dual-arm robotic system, is based on a conceptual framework that can also be applied to other impact
or dynamic release tasks, such as tossing with multi (more than 2) arm system. The learning compo-
nent of the proposed approach encodes a closed-form solution of a sub-problem and thereby allows
fast computation. Prior to its real-world validation, the posture generator was extensively evaluated in
simulation. It was assessed on a set of 105 uniformly distributed 3D landing positions within and out-
side of the dual-arm workspace (within a radius of 0.2 − 1.75m and within a cone of ±π

3 rad around
the forward horizontal axis).

The posture generator algorithm could determine the throwing reachability of each generated point by
checking whether or not it could find a feasible release state. The results of such an assessment al-
lowed us to derive a closed-form model of the dual-arm robot’s tossable space (throwing workspace)
for a given object by modeling the distribution of all reachable points. Finally, we validated experimen-
tally the proposed dual-arm generator of tossing postural states on two 7-DoF KUKA robotic arms with
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dynamical system-based motion generation described in subsection 2.3.2. The accuracy and the real-
time ability to generate tossing posture were demonstrated. Figure 5 illustrates a sample of five 3D and
joint-space release configurations and the associated free-flying trajectories of the object to the desired
landing position. The corresponding values of the release postural states (joint-space release positions
and velocities) plus five more are shown in Figure 6.

The proposed posture generator, however, only partially addresses the objectives of task T2.2. It allows
the determination of a feasible postural state necessary to perform the impact or release task, but it
does generate the state trajectory along which the robot should evolve to reach the desired postural
state. This is because the proposed posture generatorwas developed under the assumptionof kinematic
feasibility, valid state trajectories would require enforcing the dynamic feasibility constraints.

(a) (b)

Figure 5: Illustration of generated 3D and joint-space release configurations of the object and the dual-
arm robot with the associated free-flying trajectories of the object to the desired landing position. (a)-
five individual feasible release configurations (b)- feasible release 3D positions (green dot) and corre-
sponding object trajectories (blue) to the desired landing position (cyan points).

2.2.4 Publication: Planning Impact-Driven Logistic Processes

2.2.4.1 Approach Summary

This publication introduces an innovative approach designed to plan andmanage robotic processes that
involve impact, emphasizing their relevance in logistics. The method proposed in this study comprises a
two-tiered model-based strategy, as illustrated in Figure 7. The initial component of this strategy is cen-
tered on generating trajectories for a robotic arm to transition seamlessly from one state to another. It
primarily utilizes a kinodynamic Bi-RRT sampling-based planner while adhering to joint-level constraints.
The second component, tailored to the specific requirements of each process, establishes a connection
between the desired impact goal within the task space and an intermediate point in the joint space.
These tasks are formulated with certain assumptions, such as knowing the inertial characteristics of the
objects being handled. The outcomes of this study underscore the system’s capacity to execute these
tasks with precision, with a primary focus on managing impacts and manipulating objects.
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Figure 6: Release postural states (joint-space release positions and velocities) corresponding to the ten
examples of Figure 5b. top: release joint positions for left and right robotic arms; bottom: release joint
velocities for left and right arms. The joint limits for position and velocity are shown in red and black
dashed lines, respectively.

Figure 7: Proposed motion generator for scenarios with impact.
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2.2.4.2 Main achievements, Limitations, and Future perspectives

The main achievements of this work include successful Real-world experiments with Panda robots that
demonstrate precise performance in tossing, grabbing, and boxing tasks within logistics contexts.

15.5           16           16.5           17            17.5

2

1

0

-1

-2

6

2

0

-2

-6

q 
(ra

d/
s2

)
..

q 
(ra

d)
 , 

q 
(ra

d/
s)

Time (s)

acceleration

velocity

position

.

15.5           16           16.5           17            17.5 Time (s)

6

4

2

0

-2

-4

-6

x 10-3 x 10-3

5

0

-5

-10

-15

-20

-25

q 
(ra

d)

q 
(ra

d/
s)

.

velocity

position

Figure 8: Position, velocity, and acceleration tracking for joint 1: desired (dark) and real (shaded), (left).
Position and velocity tracking errors (right).

In Figure 8, we show the tracking performance of the QP controller over a trajectory sample. These
results are similar for tasks.

Figure 9: Same landing target with different impact velocities.

In Figure, 9, a throwing task with different objects impacting velocities is used. For the boxing case
(see Figures 10, 11), force measurements at the moment of impact and the corresponding task velocity
tracking with velocity jumps during impact are shown. Also, one point to mention is that we can achieve
all the tasks combined (see Figure 12) in one process that could be designed according to the need.
However, the work has several limitations. The experiments are conducted in well-calibrated settings
without using vision for object tracking, which limits the approach’s robustness in uncontrolled environ-
ments. The knowledge of object shape and inertia parameters is assumed, which may only sometimes
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Figure 12: Sequencing boxing, grabbing, and tossing in one run.

be available in logistics scenarios. Future work should consider online inertia parameter estimation and
integration with vision systems for improved performance and robustness.
Future perspectives for this research include extending the approach to online optimization planning
and enhancing robustness to uncertainties. Additional processes like impact assemblies and real-time
object catching should also be considered. Thework lays the foundation formore advanced and adaptive
robotic processes in logistics and beyond, promising further advancements in automation and industrial
applications.

2.3 T2.3 Learning of Impedance andDynamical Systems for Control with Impacts: Overview
of publications

The I.AM task T2.3 requires the learning of robot controllers for different types of impacts such as hit-
ting, tossing, boxing, and grabbing. It also requires learning appropriate impedances and their modula-
tion strategies to perform the desired impact or release tasks while mitigating the impact-induced state
jumps.
This section summarizes themain concepts of the publications associatedwith dynamical systems-based
controllers for impact-aware hitting, grabbing, and tossing. Some technical details of the tossing task
controller were provided in Deliverable 5.3.
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(a) (b) (c)

Figure 13: (a) Collected data: for different end effector speeds and direction of hit, we measure the
displacement of the object. (b) GMM Model: Here we see the data modeled using two gaussians in a
GMM. Each gaussian is shown with three iso-contour ellipsoids. (c) An example of speed prediction for
the cross validation test data - ellipsoid in blue depicts one standard deviation in the prediction value.

2.3.1 Publication: “Learning to Hit: A statistical Dynamical System based approach”

2.3.1.1 Summary of main achievements

In the paper [1], we have developed a preliminary learningmethodology to predict how an object moves
upon impact from a robot. The robot hits the object at nearly the same configuration each time and
hence the object motion can be controlled by controlling the speed and the direction in which the robot
hits the object. The motion of the robot as described in the SubSec. 2.2 is implemented on a KUKA LBR
iiwa 7 robot. It impacts an object of known mass and the data for hitting speed, hitting direction and
the distance covered by the object is recorded. This data is then used to model a generative learning
model using Gaussian Mixture Models. This is total probability of the data, i.e. P (d, θ, vee) A Gaussian
Mixture Model is used to model the entire dataset using Expectation - Maximisation. Since, this leads
to a local optimal solution, the modelling is performed with different initialization to find the better fit.
Bayesian Information Criterion is used to select the optimal number of Gaussians modelling the data.
BIC calculates a tradeoff between the likelihood of the model and number of parameters used in the
model.
Once, we have the model of the data, we predict the desired hitting speed, given the initial and the final
desired position of the object using Gaussian Mixture Regression, which calculates desired speed as
expectation of conditional probability vd = E(P (v|d, θ)). The desired hitting direction and the hitting
speed are input to the Dynamical System that generates the hitting motion.

2.3.1.2 Limitations and Future perspectives

Although the learning system works well, it needs to be re-learnt for different types of boxes, such as
those of different masses, different materials and shapes, and if hit by the robot in a different configura-
tion. This requires the new data to be collected again which is quite a time consuming process without
an automated data collection framework on real robots. We are developing an automated data collect-
ing framework using the dual arm system that would require minimum human intervention and be able
to generate data that spans different hitting configurations and different boxes. We are also working on
understanding if a generalisation is possible and to what extent it is possible between the probabilistic
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motion models of different boxes and different surfaces, which will help in reducing the amount of data
needed from real experiments.

2.3.2 Publication: ”Dual-arm control for coordinated fast grabbing and tossing of an object: Propos-
ing a new approach”

2.3.2.1 Approach Summary

This work [2] proposes a solution based on dynamical systems (DS) to address the impact and tossing
motion generation problem. From a control perspective, a desired impact or tossing state represents
an intermediate or transitory state defined in terms of desired position and velocity that must be sat-
isfied simultaneously at the impact or release instant. The requirements of such a task are fulfilled by
adopting, more precisely, a modulated DS approach where state-dependent modulation functions lo-
cally shape the motion of the robot such that it passes through the desired impact states.

The main idea is to generate motion towards an attractor located near the desired release position,
and when in its vicinity (within the modulation region), reshape the robot’s motion - prior to contact or
release of the object - such that the motion aligns first with the desired velocity direction while moving
towards the desired contact or release position. The proposed modulated dynamical system, at the
position level, has the following form

ẋd = M(x)fn(x) + fg(x) (2)

where, for a dual-arm robot, x =

 xL

xR

 ∈ R6 is the state vector of the DS with xL and xR represent-

ing the position of the left and right robot of the dual-arm, respectively. fn(x) ∈ R6 is the nominal DS
that generates the coordinatedmotion towards transitory attractors located in the vicinity of the desired
positions. fg(x) represents the equivalent grasping force in the motion space, whereasM(x) ∈ R6×6

is the state-dependent modulationmatrix that shapes locally the motion generated by fn(x). The mod-
ulation matrixM(x) is defined such that

ẋd =

fn(x) when non active

fm(x) when active

(3)

where the dynamics fm(x) is designed such that its attractor is: (I) sliding in the impact or tossing direc-
tionwith the desired speed, and (II) fixed in all other directions. The grasping forces fg(x) are generated
using Quadratic Programming (QP) to enforce the contacts constraints. Illustrations of the proposed DS
motion flow when grabbing with impact and tossing are shown in Figure 14.

2.3.2.2 Main achievements, Limitations and Future perspectives

The modulated DS-based motion generation algorithm proposed in this publication [2] allows a dual-
arm robotic system to quickly grab with impact and toss an object in one swipe. The desired states at
contact and release are achieved through a local shaping of the robots’ motions while preserving the
coordination. The proposed DS-based motion generation algorithm, whose stability and convergence
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(a) (b)

Figure 14: Illustration of motion flow generated by the DS outside and within the modulated region. (a)
motion of each robot is shaped within the modulation region (thick dotted blue line) such that it passes
through the desired transitory state (here an impact state) with the desired position represented by the
red dot and the direction of the desired velocity represented by the blue arrow. (b) object’s motion flow
generated by the DS once the object is grabbed and carried by the dual-arm system.

towards the desired states were theoretically proved, has been experimentally validated in simulation
and on real robots. An illustration of the grabbing and tossing task execution is provided through the
snapshots of Figure 15.
The benefits obtained, in terms of task duration (cycle time) and energy expenditure, when using the
proposed fast grabbing with impact and tossing in comparison to using the classical pick-and-place op-
eration with near-zero contact and release velocities were systematically evaluated for different release
velocities ranging from 0.5 m/s to 1.0 m/s. For each velocity set, we conducted five experiments of
pick-and-place and five of pick-and-toss tasks.
An example of the robots’ velocities resulting from the two approaches are shown respectively in Figure
16a (top) and (bottom), whereas the associated power and energy expenditure of both the left and right
arm are shown in Figure 16b for the classical (top), and the proposed approach (bottom), respectively.
The overall results of this comparison are summarized in Figure 17a and Figure 17b, which show the av-
erage task duration and the energy expenditure of the two approaches, respectively.

The results confirmed that the proposed approach, besides motion coordination, enables to generate,
for the dual-arm system, desired impact and tossing motions. The obtained results also suggest that
grabbing with impact and tossing, especially when the impact direction anticipates the upcoming mo-
tion of the object, lead to shorter and more energy-efficient pick-and-place tasks. These results are
consistent with those obtained in [9], where a pick-and-toss approach with a Delta robot was compared
to a classical pick-and-place approach in a waste sorting facility.

However, in defining the parameters of the proposed dynamical systems, we used quasi-linear DS of
the first order, which works well for fixed or slowly varying attractors but has no compensation ability in
tracking and therefore defers this burden to the low-level torque controller. Moreover, the hand-tuned
parameters do not generate optimal motions either in terms of energy or execution time.
Future work could use second-order DS to address the compensation problem in tracking as in [5]. In
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Figure 15: Snapshots of fast dual arm grabbing with impact and tossing an object. From left to right
and top to bottom, the snapshots show: the initial robots’ configuration, the pose of the robots’ arm at
initial contact with the object, robot arms tossing the object with the desired tossing velocity and at the
desired release location; and fourth, the landing of the object.

addition, to address the optimality problem of the generated trajectories, one solution would be to use
non-linear or Linear Parameters Varying (LPV) DS as in [6] and embed the optimality of the trajectories
in their parameters. These DS parameters could then be learned from trajectories generated off-line by
optimal controllers, for example, a minimum time controller (to minimize the cycle time), or a minimum
energy control (to minimize the energy consumed during execution).

2.3.3 Publication: “Bimanual dynamic grabbing and tossing of objects onto a moving target”

2.3.3.1 Approach Summary

In this publication [3], the coordinatedmotion of the dual-arm system that picks up and tosses the object
is generated by a modulated dynamical system as described in [2]. However, to ensure robust execution
of the task under live perturbations in the speed or position of the moving target, we proposed as a
complement to our previous DS an adaptation strategy to modulate the generated motion of the dual-
arm system. The proposed adaptation strategy is twofold: first, a velocity modulation strategy, and
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(a)

(b)

Figure 16: (a) Time evolution of mean and standard deviation of measured and commanded velocity
norms of the left and right arm for five pick-and-placing (top), and five pick-and-tossing (bottom) exper-
iments at 1.0 m/s. (b) Time evolution of estimated energy consumption of the left and right arm for five
pick-and-placing (blue), and five pick-and-tossing (red) experiments at 1.0 m/s.
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(b)

Figure 17: (a) Comparison for velocities ranging between 0.5 and 1.0 m/s of the task duration when the
pick-up and placing happened at near-zero velocity (blue) andwhen the dual arm system leverage impact
at the pickup and toss the object (red). (b) Comparison of overall energy expenditure of the dual arm
system for tossing velocities ranging between 0.5 and 1.0m/s when grabbing the object with near-zero
velocity (blue) and when performing fast object grabbing in a swipe (red).
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second, an attractor adaptation strategy. At the velocity level, the DS can be accelerated or decelerated
at will by multiplying the function by a positive scalar without affecting the stability properties at the
attractor. Thus, the DS-based motion of the robot can be adapted to changes in the velocity of the
moving target as follows

ẋd = β(x)M(x)fn(x) + fg(x) (4)

where β(x) is the adaptation factor, which is simply a state-depend scaling factor.

In the second strategy, the attractor of the nominal DS fn(x) is adapted when the target’s velocity
changes its direction. This strategy introduces the possibility of reversing the robot’s motion direction
which is not achievable with the velocity modulation of a stable DS. Such reversal may be useful, for
instance, to force the robot to retract toward an initial position. This allows the robot to have the mo-
mentum necessary to accelerate toward the desired throwing state without reaching the joint limits.
Hence, we define the attractor as

x∗ = α(xt, ẋt)xd + (1− α(xt, ẋt))xstb (5)

where α(xt, ẋt) ∈ [0, 1] is a target’s state-dependent scalar function that goes to 1 or 0 depending on
whether the target moves in the direction of the interception or not. xd is the desired attractor of the
nominal DS, and xstb denotes a standby attractor to which the robot should retract to.

2.3.3.2 Main achievements, Limitations and Future perspectives

The adaptive modulated dynamical system proposed in [3] was validated experimentally on two 7-DoF
robotic arms (KUKA LBR IIWWA7 and IIWA14) in tasks consisting of grabbing and tossing objects onto
a target moving on a conveyor belt. Such tasks represent depalletizing scenarios commonly found in
the industry. We assessed and demonstrated the accuracy, robustness, and adaptivity of the proposed
algorithm to changes in the moving target’s velocity. In other words, we showed how the proposed
control strategy adapts themotion of the dual-arm system carrying the object for successful interception
in the presence of changes in the target motion.
An illustration of the motion adaptation under live perturbations of the target’s motion is provided
through the snapshots of Figure 18 which shows successful interception of the target despite human-
induced speed perturbations (target pulled back three times). The associated plots showing the position
and velocity of the target–object–robot system under manually-induced perturbation and with adapta-
tion to compensate for it are shown in Figure 19. The linear velocity norm of the left end-effector is
shown on the top-right (the right end-effector is not shown, but follows a similar pattern); the adapta-
tion factor β(x) and the y-velocity of the target that drives it are shown at the bottom-right.
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(e) (f) (g) (h)

Figure 18: Snapshots illustrating adaptationof dual-arm system tomanual perturbations of targetmotion
in grabbing and tossing of an object onto a moving target: (a): dual-arm in standby, waiting for target
to reach estimated state-to-go; (b)-(c) and (d)-(e): perturbation introduced by manually pulling back
moving target, causing retraction of robots; (h)-(i): grabbing and tossing of object as target moves; (j):
motion of object and target after successful interception. (See video: https://youtu.be/8a4AFDYfrXo)

Figure 19: Illustration of position and velocity plots of the system with motion adaption while grabbing
and tossing an object onto a moving target under manual perturbation: left: y-evolution of position
(top) and velocity (bottom) of target (red) and object (blue), respectively, over time; (right): norm of
linear velocity of left robot (top) and adaptation factor β(x) and y-velocity of target (bottom). The robot
motion was modulated based on estimated changes in target speed to ensure successful interception.
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Although experimentally validated, the proposed DS-based dual-arm framework was only implemented
in task space (where the grabbing constraints and the coordination mattered the most). Consequently,
the DS is agnostic of what happens at the joint level and cannot take advantage of the robots’ configu-
rations to achieve a more efficient tossing motion.

Indeed, the motion modulation framework, at the core of the method presented in publication [2] and
then used in [3], can be formulated both in task space and in joint space. It offers a very powerful frame-
work to embed soft and hard constraints into dynamical systems. Similarly to obstacle avoidance con-
straints enforced through task space modulation, for instance in [7] or [8], one can also use joint space
configuration-dependent functions in conjunction with the robot’s kinematics to modulate the motion
of the robotic system in order to satisfy, for instance, the robot joint limits or avoid self-collisions. Thus,
such a solutionwill result in constraint-aware DS, capable of generatingmotions that are consistent with
the constraints of a given robotic system as described in Deliverable 5.3 for the single-arm tossing task.

In publication [2] and publication [3], we generated desired impact velocities when grabbing objects
without however taking into account the impact dynamics (both at the task level and at the control level).
Throughout our experiments, the desired impact speeds were limited and the induced impact forces,
as well as the jumps of velocities and torques, were assumed to remain within the safe limits for the
robots and for the object. However, this assumption is limited since the impact forces and the velocity
jumps do not only depend on the pre-impact velocities but also on the configurations of the robots and
the properties of the impacting materials (e.g. rigidity, coefficient of restitution, etc.). To address the
aforementioned problem, future works should include impact dynamics in determining impact velocity
limits. Moreover, at the control level, a potential solution would be to combine the proposed DS with
controllers such as those proposed in [10] or [11, 12], designed to keep force jumps and subsequent
torque jumps within the limits of the robot. In addition, the continuity of the torques sent to the robots’
motors can be ensured, for example, by using control strategies inspired by the reference spreading
approach [13] or by projecting the command into an impact-invariant space as proposed in [14].

2.4 Ongoing Developments

2.4.1 Ongoing: “Learning impedance modulation for impact-aware manipulation”

While the task definitions of this project such as swiping and tossing, can define themotion and constrain
the solutions space of the forces, each of these actions also entails uncertainty. Models of uncertainty
at impact used in T.2.1 from T1.4 must be embedded to create inherently robust control laws. To this
end, we will exploit impedance control laws driven by dynamical systems to embed models of feasible
motions. In such a model, the impedance represents an envelope around the trajectories of the dynam-
ical system. In this region, all trajectories lead to a feasible solution to the task.

The goal of the work is to estimate the damping matrix used for the dual arm tossing task such that the
task is completed robustly and as fast as possible. This work builds upon the results presented in Publi-
cation 2.2.2, Publication 2.2.3, Publication 2.3.2, and Publication 2.3.3. The previous works employed a
passive dynamical systems approach of the form,

F = −D(x)
(
ẋ− f(x)−D(x)−1fd

e

)
(6)

WhereF is the force command sent to the robot, q is the joint space position,x is the robot end-effector
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position,D(x) is the configuration dependent damping matrix to be learned, f(x) is the dynamical sys-
tem to be learned, andfD

e is the desired end-effector force required for force closure. Tomove optimally
fast prior to contact, we will first plan in joint space and learn the damping matrix. The learning will be
accomplished in three steps:

Step 1: Determine Contact State: The end-effector position xf
d and velocity ẋf

d are defined by the tra-
jectory required to accelerate the box. However, for redundant robots such as the KUKA LBR IIWA and
the FRANKA EMIKA which have 7 degrees of freedom, the joint space configuration qfd and joint space
velocity q̇fd at the time of contact with the box is not uniquely defined. In this way, the redundancy of
the robot can be exploited to select for preferable inertia and kinematic stiffness. The goal of this task is
to minimize the absolute time of the task. Thus, to achieve the fastest impacts with the smallest forces
and kinematic stiffness normal to the box will be minimized at the time of impact. We will search for
or learn the nominal minimum inertia and stiffness offline. This approach will be similar to that of the
‘velocity hedgehog’ approach introduced by Liu et al. [15]. This type of learning will entail sampling a
large number of joint configurations. Then the index of the configurations that correspond the to lowest
stiffness and flux in a particular direction will be determined.

Step 2: Compute Dynamical System: Given the initial joint configuration, final positions of joint config-
uration, the joint position limits, the joint velocity limits, and torque limits, polyMPC[16] can be used
to generate time optimal trajectories from many starting states to a final state. Using the time optimal
trajectories, a joint space dynamical system, denoted f(q), will be learned. In this way, the learned
dynamics system will be an approximation of the time-optimal solution constrained by the physical lim-
itations of the robot.

Step 3: Compute Impedance: Given f(q) the goal is to determine the optimal parameters forD(q). As
a first step, we will solve for a diagonal impedance matrix with a constant coefficient. The cost to be
minimized will be the potential and kinetic energy of the robot system subject to the constraints that
the terminal joint position and joint velocity are achieved.

2.5 List of I.Learn Softwares

2.5.1 Single-arm controller for hitting an object

Two control strategies were derived from the solution presented in publication “Learning to Hit: A statis-
tical Dynamical System based approach” (cf. section 2.3.1): one based on velocity control and the other
relying on torque control. Both controllers enable a robot to perform a hitting task on an object with a
desired hitting speed and hitting direction.

Thefirst implementation canbe accessed through this Git repositoryhttps://github.com/epfl-lasa/
hitting_sim/tree/main. This controller is based on velocity control. It was implemented in Python,
primarily using Pybullet as simulator before integrating the Algoryx simulator.

The second implementation is available in this Git repository https://github.com/epfl-lasa/i_
am_project . The library iswritten in C++ and is integratedwith RobotOperating System (ROS) providing
a versatile platform for application in both physical and simulated environments. It currently runs with
the Gazebo simulator and on the KUKA LBR iiwa 7 robot.
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2.5.2 Dual-arm controller for grabbing and tossing an object

The codes associated with the publication ”Dual-arm control for coordinated fast grabbing and tossing
of an object: Proposing a new approach” (cf. section 2.3.2) and the publication ”Bimanual dynamic grab-
bing and tossing of objects onto a moving target” (cf. sections 2.2.3 and ??) can be found on the follow-
ing GitHub repository: https://github.com/epfl-lasa/iam_dual_arm_control. This repository
contains codes to generate coordinated motion and forces to control a robotic dual-arm system to grab
and toss objects on fixed and moving targets within the tossable space of the dual-arm system.
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3 CONCLUSION

In this Deliverable D2.2, we provided an overview of the publications associated with the I.Learn frame-
work. The report focused essentially on tasks T2.2 and T2.3 and provided approach summaries and
main results related to each publication pertaining to each task. It also discussed the limitations of the
current achievements and provided prospective directions. More specifically, the report presented the
main methods and results on the determination of impact postures and the generation of impact and
throwing motions. In general, the solutions described in the report and tested on real robots largely
meet the requirements of tasks T2.2 and T2.3. However, all the presented approaches explicitly or im-
plicitly assume kinematic feasibility, which does not guarantee the dynamic feasibility of the considered
tasks. The latter, which is more complex, is muchmore general because, beyond kinematics, it takes into
account the inertial properties of robots in motion as well as their initial conditions. Current develop-
ments to be completed in the next six remaining months of the project are attempting to address these
limitations by learning dynamic constraints in conjunction with impedance associated with the tasks, as
part of Task 2.4 (ongoing). The final solutions of I.Learn will be integrated with those of I.Model, I.Sense
and I.Control and then validated in the GRAB scenario, which will be reported in Deliverable 5.5.

D2.2 - I.Learn Report 29 H2020 EU project I.AM. (No. 871899)



4 REFERENCES

[1] H. Khurana, M. Bombile and A. Billard, “Learning to Hit: A statistical Dynamical System based ap-
proach,” 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague,
Czech Republic, 2021, pp. 9415-9421, doi: 10.1109/IROS51168.2021.9635976.

[2] M. Bombile, A. Billard, Dual-arm control for coordinated fast grabbing and tossing of an ob-
ject: Proposing a new approach, IEEE Robotics Automation Magazine 29 (3) (2022) 127–138.
doi:10.1109/MRA.2022.3177355.

[3] M. Bombile, A. Billard, Bimanual dynamic grabbing and tossing of objects onto a mov-
ing target, Robotics and Autonomous Systems, (2023), 104481, ISSN 0921-8890, https:

//doi.org/10.1016/j.robot.2023.104481. (https://www.sciencedirect.com/science/
article/pii/S0921889023001203)

[4] H. Khurana, A. Billard, Motion Planning and Inertia Based Control for Impact Aware Manipulation,
IEEE Transactions of Robotics (T-RO) (2023 - Accepted)

[5] S. S. Mirrazavi Salehian, M. Khoramshahi, and A. Billard. A dynamical system approach for catching
softly a flying object: Theory and experiment. in IEEE Transactions on Robotics, vol. 32, no. 2, pp.
462-471, April 2016., 2016.

[6] S. S. Salehian Mirrazavi, Nadia Figueroa and Aude Billard, Dynamical system-based motion planning
for multi-arm systems: Reaching for moving objects. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, (2017), (pp. 4914-4918)

[7] Seyed Mohammad Khansari-Zadeh and Aude Billard. A dynamical system approach to realtime ob-
stacle avoidance. Autonomous Robots, 32(4):433-454, 2012.

[8] L. Huber, A. Billard, and J.-J. Slotine. Avoidance of convex and concave obstacles with convergence
ensured through contraction. IEEE Robotics and Automation Letters, 2019.

[9] F. Raptopoulos, M. Koskinopoulou, andM.Maniadakis. Robotic pick-and-toss facilitates urbanwaste
sorting. In 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE),
pages 1149-1154. IEEE, 2020.

[10] Y.Wang, Niels Dehio, A. Tanguy, and A. Kheddar. Impact-Aware Task-Space Quadratic-Programming
Control. working paper or preprint, November 2020. URL https://hal.archives-ouvertes.fr/ hal-
02741682.

[11] N. Dehio and A. Kheddar. Robot-Safe Impacts with Soft Contacts Based on Learned Deformations.
In ICRA, Xi’an, China, May 2021. URL https://hal.archives-ouvertes.fr/hal-02973947.

[12] N. Dehio, Y. Wang, and A. Kheddar. Dual-arm box grabbing with impact-aware mpc utilizing soft
deformable end-effector pads. IEEE Robotics and Automation Letters, 7(2):5647-5654, 2022.

[13] M. Rijnen, A. Saccon, and H. Nijmeijer. Reference spreading: Tracking performance for impact tra-
jectories of a 1dof setup. IEEE Transactions on Control Systems Technology, 28 (3):1124-1131, 2019.

D2.2 - I.Learn Report 30 H2020 EU project I.AM. (No. 871899)

https://doi.org/10.1016/j.robot.2023.104481
https://doi.org/10.1016/j.robot.2023.104481
https://www.sciencedirect.com/science/article/pii/S0921889023001203
https://www.sciencedirect.com/science/article/pii/S0921889023001203


[14] W. Yang and M. Posa. Impact invariant control with applications to bipedal locomotion. In 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5151-5158. IEEE,
2021.

[15] Y. Liu, A. Nayak, and A. Billard. A solution to adaptivemobilemanipulator throwing. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1625–1632. IEEE, 2022.

[16] P. Listov, and C. Jones. Polympc: An efficient and extensible tool for real-time nonlinear model
predictive tracking and path following for fast mechatronic systems. Optimal Control Applications
and Methods, 41(2):709–727, 2020.

D2.2 - I.Learn Report 31 H2020 EU project I.AM. (No. 871899)


	EXECUTIVE SUMMARY
	INTRODUCTION
	I.AM. project background
	I.Learn background
	Purpose of the deliverable
	Intended audience

	SUMMARY AND RESULTS OF I.LEARN
	I.AM WP2 objectives
	Task 2.2 Impact Posture Generator for Dynamic Manipulation: Overview of publications
	Publication: ``Learning to Hit: A statistical Dynamical System based approach"
	Approach Summary
	Limitations and Future perspectives

	Publication: ``Motion Planning and Inertia Based Control for Impact Aware Manipulation"
	Approch Summary
	Limitations and Future perspectives

	Publication: ``Bimanual dynamic grabbing and tossing of objects onto a moving target"
	Approach Summary
	Main achievements, Limitations, and Future perspectives

	Publication: Planning Impact-Driven Logistic Processes
	Approach Summary
	Main achievements, Limitations, and Future perspectives


	T2.3 Learning of Impedance and Dynamical Systems for Control with Impacts: Overview of publications
	Publication: ``Learning to Hit: A statistical Dynamical System based approach"
	Summary of main achievements
	Limitations and Future perspectives

	Publication: "Dual-arm control for coordinated fast grabbing and tossing of an object: Proposing a new approach" 
	Approach Summary
	Main achievements, Limitations and Future perspectives

	Publication: ``Bimanual dynamic grabbing and tossing of objects onto a moving target"
	Approach Summary
	Main achievements, Limitations and Future perspectives


	Ongoing Developments
	Ongoing: ``Learning impedance modulation for impact-aware manipulation"

	List of I.Learn Softwares
	Single-arm controller for hitting an object
	Dual-arm controller for grabbing and tossing an object


	CONCLUSION
	REFERENCES

