
Impact-Aware Manipulation by Dexterous Robot Control and Learning inDynamic Semi-Structured Logistic Environments

Impact Posture Planning for Dynamic Manipulation

Dissemination level Public (PU)
Work package WP2: Learning
Deliverable number D2.1
Version F-1.0
Submission date 11/01/2023
Due date 31/12/2022

www.i-am-project.eu
This project has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No. 871899

Authors
Authors in alphabetical order

Name Organisation Email

Ahmed ZERMANE CNRS ahmed.zermane@lirmm.fr
Niels DEHIO CNRS Niels.Dehio@kuka.com
Abderrahmane KHEDDAR CNRS kheddar@lirmm.fr
Control sheet
Version history

Version Date Modified by Summary of changes

0.1 23/12/2022 Ahmed ZERMANE TOC & first contents
0.11 30/12/2022 Abderrahmane KHEDDAR Improvement first draft
0.12 31/12/2022 Ahmed ZERMANE Improvement first draft (Adding clarifications)
0.5 31/12/2022 Abderrahmane KHEDDAR Pre-final version ready for peer-review
0.51 09/01/2023 Jari VAN STEEN Comments added as peer review
0.9 10/01/2023 Ahmed ZERMANE Peer-review comments addressed
1.0 10/01/2023 Abderrahmane KHEDDAR Revised version ready for submission, qualitycheck

Peer reviewers

Reviewer name Date

Reviewer 1 Michael BOMBILE 06/01/2023
Reviewer 2 Jari VAN STEEN 09/01/2023
Reviewer 3 Jos DEN OUDEN 10/01/2023

Legal disclaimer
The information and views set out in this deliverable are those of the author(s) and do not necessarilyreflect the official opinion of the European Union. The information in this document is provided “as is”,and no guarantee or warranty is given that the information is fit for any specific purpose. Neither theEuropean Union institutions and bodies nor any person acting on their behalf may be held responsiblefor the use which may be made of the information contained therein. The I.AM. Consortium membersshall have no liability for damages of any kind including without limitation direct, special, indirect, orconsequential damages that may result from the use of these materials subject to any liability which ismandatory due to applicable law. Copyright© I.AM. Consortium, 2020.

D2.1 - Impact Posture Planning for Dynamic Manipulation1 H2020 EU project I.AM. (No. 871899)

TABLE OF CONTENTS

EXECUTIVE SUMMARY . 4

1 INTRODUCTION . 51.1 I.AM. project background . 51.2 Deliverable topic background . 51.3 Purpose of the deliverable . 61.4 Intended audience . 6
2 DATA-DRIVEN POSTURE GENERATOR . 72.1 Overview . 72.1.1 Environment . 72.2 Selecting Optimal Release Configurations . 82.2.1 Reduced Problem . 92.2.2 Constraints for Sampling Release Configurations 102.2.3 Procedure for Sampling Release Configurations . 102.3 Polytope Mapping for Feasible Task-Space Velocities 112.3.1 Post-processing the data set obtained from Simulations 122.3.2 Learning the Release-Impact-Rest Model . 132.3.3 Release Configuration Optimization . 132.4 Joint space release configuration . 142.5 Tossing with the Panda Robot . 142.6 Quantitative Evaluation . 142.7 Conclusion . 17
3 PLANNING-BASED POSTURE GENERATOR . 183.1 Overview . 183.2 Approach . 183.2.1 Double Integrator Minimum Time . 213.2.2 Jerk-limited trajectory generation . 233.2.3 Arrival-Time Synchronization and Infeasible Time 243.2.4 Trajectory Tracking . 243.3 Ballistic Throws . 253.3.1 Robot Tossing Workspace . 253.3.2 Ballistic Optimization . 253.4 Impact Grabs . 273.4.1 Synchronizing dual robots for grabbing . 283.5 Real-Robot Experiments . 28
4 CONCLUSION . 29

5 REFERENCES . 30

D2.1 - Impact Posture Planning for Dynamic Manipulation2 H2020 EU project I.AM. (No. 871899)

ABBREVIATIONS

Abbreviation Definition

BIC Bayesian Information Criterion
DIMT Double Integrator Minimum Time
EC European Commission
PU Public
QP Quadratic Programming
WP Work Package

D2.1 - Impact Posture Planning for Dynamic Manipulation3 H2020 EU project I.AM. (No. 871899)

EXECUTIVE SUMMARY

The main objectives of I.Learn work package is to learn models of impacts and objects’ dynamics result-ing from impact, based on high-resolution simulation for model, also to compute postures that preparerobots to generate impacts and release events with its surrounding, possibly simultaneously in multiplelocations, employing the learned impact models with an outcome that is aligned with the user-specifieddynamic manipulation goals.For different types of impact (swiping, tossing, grabbing and boxing) WP2 also aims to learn robot con-trollers and QP-parameters for multi-contact planning under stability constraints needed in I.Control.The work package comprises five (5) tasks as follows:
1. Learning uncertainty models at impact;
2. Impact Posture Generator for Dynamic Manipulation;
3. Learning of Impedance and Dynamical Systems for control with impacts;
4. Learning of QP control weights, gains, Impedance;
5. Learning Benchmark and Progress Definition and Evaluation.

This deliverable focuses on the second item, that is: devising an impact posture generator for dynamicmanipulation. Simply saying, given the initial state of a givenmanipulator robot (pose and pose velocity),find a trajectory along which the robot is steered to given desired impact location and impact velocity, orequivalently, a desired pose and pose velocity of the impacting end-effector. This is more of a planningthan a static posture generator problem that CNRS has previously developed in multi-contact planning.Since we need to find a trajectory, formulating the problem by means of numerical optimization toolswould lead to a semi-infinite programming (SIP) problem. The latter are known to be hard to solveefficiently and certainly not in real-time.We have therefore investigated two possible approaches:
1. the first one is a data-driven approach that will generate impact poses from simulated experi-ments of intended use-cases; in order to investigate what it pertains in terms of modules andworking efforts, we applied the general idea to the tossing scenario (as it was the first scenario toinvestigate see deliverable D5.3). Section 2 details the approach and more importantly considersthe tossing and throwing as a single coupled problem. Hence data where generated by simulatingmillions of throws and considering the as the thrown object finale pose on the conveyor.
2. the second one is a combined planning-optimization approach. Applied for throwing and dual-armgrabbing (application to boxing is straightforward), it decouples the problem into planning for theend-effector to reach a given positionwith a given velocity froma given initial robot state, and thenused for whatever serve the purpose. For example, in tossing, the planning module is coupled toparametrized ballistic trajectory for given object and an upper layer optimization seeks for thebest coupling between the planner and the ballistic trajectory. In grabbing, this planing brick isused to steer the two arms to as both end-effectors desired poses and velocities are reached at arendez-vous. In boxing, we think that it’s usage is straightforward as the robot shall simply achievea given impact at a given location (eventually with a held object).

D2.1 - Impact Posture Planning for Dynamic Manipulation4 H2020 EU project I.AM. (No. 871899)

1 INTRODUCTION

1.1 I.AM. project background

Europe is leading the market of torque-controlled robots. These robots can withstand physical interac-tion with the environment, including impacts, while providing accurate sensing and actuation capabili-ties. I.AM leverages this technology and strengthens European leadership by endowing robots to exploitintentional impacts formanipulation. I.AM focuses on impact awaremanipulation in logistics, a newareaof application for robotics which will grow exponentially in the coming years, due to socio-economicaldrivers such as booming of e-commerce and scarcity of labour. I.AM relies on four scientific and techno-logical research lines that will lead to breakthroughs in modeling, sensing, learning and control of fastimpacts:
1. I.Model offers experimentally validated accurate impact models, embedded in a highly realisticsimulator to predict post-impact robot states based on pre-impact conditions;
2. I.Learn provides advances in planning and learning for generating desired control parametersbased on models of uncertainties inherent to impacts;
3. I.Sense develops an impact-aware sensing technology to robustly assess velocity, force, and robotcontact state in close proximity of impact times, allowing to distinguish between expected andunexpected events;
4. I.Control generates a framework that, in conjunctionwith the realisticmodels, advanced planning,and sensing components, allows for robust execution of dynamic manipulation tasks.

This integrated paradigm, I.AM, brings robots to an unprecedented level of manipulation abilities. Byincorporating this new technology in existing robots, I.AM enables shorter cycle time (10%) for applica-tions requiring dynamic manipulation in logistics. I.AMwill speed up the take-up and deployment in thisdomain by validating its progress in three realistic scenarios: a bin-to-belt application demonstrating ob-ject tossing, a bin-to-bin application object fast boxing, and a case depalletizing scenario demonstratingobject grabbing.
1.2 Deliverable topic background

Intentional impacts require to steer a robot in a configuration (that we call end posture) that allows itreaching the operational impact targets, i.e., task-space desired impact at best. Such configurations shallfulfill the set of objectives dictated by the tasks (including the desired pre- or post- impacts parametersif needed), under various constraints dictated by the limitations of the robot in terms of maximum resul-tant impulses that can be possibly handled/absorbed by the hardware. This is crucial in complex roboticsystems (e.g., dual-arm robot manipulators eventually ported with a mobile base), where it has beenused to find feasible multi-contact postures in both planning and control [1, 2, 3]. For a given roboticsystem, we consider the problem of finding a configuration to achieve a set of objectives, a subset ofwhich can be impact-based (e.g., make a box start sliding with a desired acceleration by hitting it withthe end effector). The outcome would answer the question: what posture and pre-impact speed doesa robot has to take in order to achieve a desired post-impact speed in the task space?Prior to I.AM project, CNRS developed such a “posture generator” for any kind of robotic systems thatcomputes static posture for a set of tasks (including contact force as decision variable, i.e., as part of the

D2.1 - Impact Posture Planning for Dynamic Manipulation5 H2020 EU project I.AM. (No. 871899)

“posture”) [3]. Indeed, the desired force, that will be extended here into desired impact with a givenlocationwill have a great influence on (i) the configuration the robot has to take and eventually on (ii) theother contact locations. The software consisted in an open-source customized non-linear optimizationsolver that operates directly onmanifolds. At thewriting of the proposal, our ideawas to add constraintsandmodels to the existing posture generator in order to extend it to impact tasks. However, in the courseof the project we realized that this idea is not possible for the following reasons:
• the posture generators developed in [1, 2, 3] generate static postures, even if the final goal is tomake a contact on a surface, eventually with a given force, it reasons on pure geometry x = g(q),
g being the forward geometry, x the operational robot space and q the robot joint space, andusing the known relation resulting from the virtual work principle in mechanics τ = J(q)f , τbeing the actuators (joint) torques, J(q) the robot Jacobian and f the contact forces. As youmay notice, initial posture and condition have no influence on the resulting posture. That is tosay, once a posture is computed and exist, there is no guarantee that a trajectory exist that bringthe robot from any initial condition to the desired posture (e.g., steering methods in planning).Since a desired impact means a desired velocity in the operational space, we could have used therelation ẋ = J(q)q̇, where ẋ and q̇ are the time derivative (velocity) in the operational and jointspaces respectively and simply make sure to add bounds on the joint velocities in the generaloptimization problem (increased with new decision variables). Similarly, we have no guaranteethat the returned solution is feasible.

• the optimization problem being non-linear, we have experienced the solver to get stuck in localminima problem and considerable computation time. In I.AM. we are rather interested by havingan impact solution that is effectively feasible and if possible, fast enough to be used in industrysetting with repetitive and cycling toss, grab, box of various objects.
1.3 Purpose of the deliverable

This deliverable aims at providing a so called Impact-driven “posture generator”, in fact it is an impact-driven planner. That is to say, a software module that takes as input: (i) the robot model; (ii) the currentrobot configuration (current joint positions and joint velocities); and (iii) desired task-space impact of agiven end-effector (or equivalently the desired position and velocity of impact) and provides as outputthe robot trajectory that achieves goal (iii) when it exists. The planner can be coupled to parametrizedballistic trajectories for tossing scenarios, or used in synchrony with dual-arm grabbing scenarios, orused as is in boxing scenarios.
1.4 Intended audience

The dissemination level of this report (D2.1) is ‘public’ (PU) – meant for members of the Consortium(including Commission Services) and the general public.

D2.1 - Impact Posture Planning for Dynamic Manipulation6 H2020 EU project I.AM. (No. 871899)

2 DATA-DRIVEN POSTURE GENERATOR

In order to generate desired impact postures, we have investigated first a data-driven approach. Theidea is to generate various motions for a given robot and register the set of reachable space with variousvelocities for each point starting from different initial conditions. However, we could also consider thewhole impact task process. For instance, in the tossing use-case, instead of learning only the operationalreachable pose and velocity states, we could consider learning the entire throwing process and considerlater as input only the desired landing spot and configuration of a given thrown object. We can then usethis example to build rather a learningmethodology and if successful, themethodology can be extendedto the grabbing and boxing use-cases.
2.1 Overview

We focus on the robotic tossing use-case of objects in a scenario defines in I.AM. (cf. Fig. 1). The researchproblem is to toss the object with the robotmanipulator such that it lands at a conveyor belt with a givenorientation or a given state at rest. A common reason for that is a bar code that needs to be oriented ina certain way to be scanned easily. First, we consider objects that can be treated as a single rigid bodywith known dynamics and shape. Generalization can be done in a second stage by generating data withobjects having various sizes, weight, shape and that can be soft.In our approach, we decompose the challenge of tossing objects in two subsequent sub-problems:
1. select a reasonable release configuration;
2. plan and execute with the robot a potentially non-linear point-to-point motion in joint space thatpasses through the desired release configuration.

Both sub-problems constitute constrained optimization problems, as the actuated robot itself has lim-ited capabilities due to its shape and mechatronics limitations. The complete pipeline of our method isillustrated in Fig 2.
2.1.1 Environment

The experimental platform is a 7 degrees-of-freedom Panda manipulator from Franka Emika, controlledat 1 ms update rate. The robot’s hardware limits are specified on the manufacturer’s website1. Weattach to the flange a special gripper provided by Smart Robotics with a suction cup. We employ our newinterface implementation to operate Panda and pump simultaneously at different control frequencies2,see also the related publication [4]. In the experiments presented here, we toss a cardboard box havinga mass of 0.566 kg (shape 0.272m× 0.155m× 0.114m).We use a realistic, validated model of the innovation lab at TU/e as the simulation environment. In thissetup, the panda robot is mounted on a table. A given conveyor is located nearby and placed such thatthe conveyor belt moves with a constant speed of 1m/s along the negative y-axis w.r.t the world frame,cf. Fig 1.Realistic friction and restitution parameters for the box-impact events have been identified and validatedbased on real-world impact data. This ensures that simulated box-impacts by AGX Dynamics3 are similar
1https://frankaemika.github.io/docs/control_parameters.html#constants2https://github.com/jrl-umi3218/mc_franka3https://www.algoryx.se/agx-dynamics

D2.1 - Impact Posture Planning for Dynamic Manipulation7 H2020 EU project I.AM. (No. 871899)

Figure 1: Realistic simulationmodel of the innovation lab (validated). The conveyor belt moves along thenegative y-axis (green) of the world frame, drawn in the lower right corner.
to the real box-impacts. In this work, we are ignoring effects due to wind or air drag which is reasonablefor short distances and considerable object weights.
2.2 Selecting Optimal Release Configurations

In a robotic tossing scenario, the object’s trajectory flying in space, impacting, bouncing, tumbling, slid-ing, and finally landing at a certain rest pose depends on the robot’s end-effector pose and end-effectorvelocity at the moment of release, hereafter referred to as end-effector release configuration4. It is im-portant to note that the robot’s nullspace posture and nullspace speed at the moment of release doesneither affect the object’s flight trajectory nor its rest pose.Our goal is to select an optimal end-effector configuration for releasing the object given a specific targetrest orientation. The term “optimal” here means that we are aiming for a release configuration thatis reliable with respect to slight variations (or disturbances), and hence, robustly ensures the object islanding with the desired surface in contact. Note that the robot in practice likely fails to drop off theobject at the exact release pose with the exact release velocity. Thus, it is advantageous to aim for arelease configuration that is robust to deviations.The given research problem requires an inverse impact model. The impact dynamics can be accuratelysimulated forward in time. Due to the highly non-smooth dynamical impact effects (such as friction oftwo materials against each other, restitution coefficients...) it is however almost impossible to analyti-cally infer an inverse impact model. Therefore we are utilizing learning techniques that can circumventthis problem. In order to acquire a data-set for the given robot manipulator comprising release con-figurations and corresponding object rest states, we propose to simulate the object’s flight and landingtrajectories, thereby including also highly non-smooth dynamical impact effects.
4Of course it depends also on the dynamical properties of the object and the environment (conveyor).

D2.1 - Impact Posture Planning for Dynamic Manipulation8 H2020 EU project I.AM. (No. 871899)

Figure 2: I.AM. tossing pipeline developed at CNRS.
2.2.1 Reduced Problem

In the following, we consider an end-effector configurationλ ∈ R12 as the stacked vector of end-effectorpose x ∈ R6 (position & orientation) and end-effector (linear & angular) velocity ẋ ∈ R6

λ =

x
ẋ

A naive approach explores all twelve dimensions of λ by testing systematically feasible joint displace-ments and velocities and applying forward kinematics. This approach would, however, result in an in-tractable amount of simulation trials since many tosses miss the desired target region.In order to reduce the problem dimension for learning, we vary only five task-space dimensions andconsider the remaining seven dimensions as constant:

• translation along x-axis→ constant at 0.33m.
D2.1 - Impact Posture Planning for Dynamic Manipulation9 H2020 EU project I.AM. (No. 871899)

• translation along y-axis→ varied.
• translation along z-axis→ varied.
• rotation around x-axis→ varied.
• rotation around y-axis→ constant at 0 rad.
• rotation around z-axis→ constant at 0 rad.
• linear velocity along x-axis→ constant at 0m/s.
• linear velocity along y-axis→ varied.
• linear velocity along z-axis→ varied.
• angular velocity around x-axis→ constant at 0 rad/s.
• angular velocity around y-axis→ constant at 0 rad/s.
• angular velocity around z-axis→ constant at 0 rad/s.

The world frame is indicated in Fig 1.
2.2.2 Constraints for Sampling Release Configurations

We aim at generating a list of end-effector release configurationsλ as input for the dynamic box-impactsimulations. The sampling in task-space is not trivial sincewe need to fulfill the robot’s capabilities whichare defined in the joint-space. Accordingly, the task-space limits are configuration-dependent.We denote the Jacobian related to angular velocities asJw and related to linear velocities asJv. Further,
w and v denote angular and linear task-space velocities respectively.The well-known non-linear mapping between joint-space velocities q̇ and task-space velocities is givenbyw = Jwq̇ and v = Jvq̇.It is important to ensure that randomly generated release configurations are feasible, i.e., within therobot’s joint position limits

¯
q ≤ q ≤ q̄ and joint velocity limits ˙

¯
q ≤ q̇ ≤ ˙̄q.In addition, we further incorporate prior knowledge by enforcing release configurations with linear end-effector velocities that point towards the target: −∞ ≤ vy = Jvy q̇ ≤ 0 and 0 ≤ vz = Jvz q̇ ≤ ∞.As mentioned above, we enforce zero linear velocity along the x-axis vx = Jvx q̇ = 0 and zero angularvelocities Jwq̇ = 0. Also, we aim for large velocities by enforcing 0.4 ≤ −1

2vy +
1
2vz ≤ ∞. In practice,

∞ is replaced by upper ou lower bounds.
2.2.3 Procedure for Sampling Release Configurations

Our sampling procedure for obtaining random but feasible release configurations is conducted in con-secutive steps as follows:
1. Sample a random end-effector pose by varying the y-position, z-position, and the rotation-anglearound the x-axis. The remaining three pose parameters are constant.
2. Perform inverse kinematics in order to obtain a corresponding (self-)collision-free joint posturewithin the joint angle limits. Thereby, confirm that the end-effector pose is within the robot’sreachable space.

D2.1 - Impact Posture Planning for Dynamic Manipulation10 H2020 EU project I.AM. (No. 871899)

3. Map the robot’s joint velocity limits for that particular joint posture onto the task-space, resultingin a convex polytope of feasible end-effector velocities (this requires a sophisticated configuration-dependent mapping technique to be explained below).
4. Sample a feasible end-effector velocity (linear along y- and z-axes) utilizing the generated task-space polytope. The remaining four velocity parameters are zero.

2.3 Polytope Mapping for Feasible Task-Space Velocities

When gathered, the previous inequalities form a convex, high-dimensional polytope that represents theset of feasible solutions in terms of vy and vz . The task-space velocity bounds along y- and z-axis arecoupled and cannot be treated separately. By choosing a vector d ∈ R2 (treated as a ray that points ina certain direction), we obtain a feasible two-dimensional tuple (or vertex) consisting of extreme linearvelocities along y- and z-axis through the linear program

argmin
q̇,vy ,vz

[vy,vz]d (1)

s. t.

Jwx , 0, 0

Jwy , 0, 0

Jwz , 0, 0

Jvx , 0, 0

Jvy , −1, 0

Jvz , 0, −1

 q̇

vy

vz

 =

0

0

0

0

0

0

˙
¯
q

−∞
0

0.4

≤

I, 0, 0

0, 1, 0

0, 0, 1

0, −1
2 ,

1
2

 q̇

vy

vz

≤

˙̄q

0

∞
∞

Solving (1) multiple times for different rays d, we collect a list of extreme vertices, representing a convexpolytope in the two-dimensional space of linear velocities vy, vz , whereas angular velocities w = 0,and the linear velocity vx = 0 are constrained to zero. The resulting vertex representation allowsfor uniformly sampling a feasible end-effector velocity within the mapped polytope for the given jointconfiguration. Refer to [5] for an efficient algorithm to select useful search directions (rays). To ourbest knowledge, constructing such task-space velocity polytope for a redundant manipulator has notbeen proposed before. This mapping of course depends on the given Jacobian, and hence, has to berecomputed for each new joint posture.In the next step, we can also allow non-zero angular velocities around the x-axis. This increases theproblem dimension by one additional parameter, but allows for more complex object motion. Choosing

D2.1 - Impact Posture Planning for Dynamic Manipulation11 H2020 EU project I.AM. (No. 871899)

wx ̸= 0 yields
argmin
q̇,wx,vy ,vz

[wx,vy,vz]d (2)

s. t.

Jwx , −1, 0, 0

Jwy , 0, 0, 0

Jwz , 0, 0, 0

Jvx , 0, 0, 0

Jvy , 0, −1, 0

Jvz , 0, 0, −1

q̇

wx

vy

vz

 =

0

0

0

0

0

0

˙
¯
q

˙
¯
vx

˙
¯
wy

˙
¯
wz

0.4

≤

I, 0, 0, 0

0, 1, 0, 0

0, 0, 1, 0

0, 0, 0, 1

0, 0, −1
2 ,

1
2

q̇

wx

vy

vz

≤

˙̄q

˙̄vx

˙̄wy

˙̄wz

∞

with ˙̄vx = ∞, and ˙̄wy = 0, ˙̄wz = ∞.
2.3.1 Post-processing the data set obtained from Simulations

The generated list of release configurations are independently simulated utilizing the developed AGXDynamics simulation framework. These simulations do not consider a robot, as we are only interestedin learning the flight and impact behavior of the object. Estimated friction and restitution parametersremain constant. A simulation stops
• if the relative velocity between the box and the moving conveyor belt is zero (success), or
• if the box reaches the floor (failure), or
• after a maximum of 2 seconds (failure).

We post-process the simulated trajectories and exclude all failure cases (≈ 25%).The data-set is then constructed by storing a six-dimensional feature vectorψ ∈ R6 for each simulation,comprising input information (i.e., for the release) and output information (i.e., resulting rest state). Inother words, each individual simulation constitutes a separate demonstrationψ parameterized by:
• translation along y-axis
• translation along z-axis
• rotation around x-axis
• linear velocity along y-axis
• linear velocity along z-axis
• ID of the box surface in contact with the conveyor

D2.1 - Impact Posture Planning for Dynamic Manipulation12 H2020 EU project I.AM. (No. 871899)

2.3.2 Learning the Release-Impact-Rest Model

Thedata-set becomes a high-dimensional point-cloudwhen treating each feature vector as a six-dimensionaldata point. We model the probability distribution of this point-cloud using the Gaussian Mixture Model(GMM) [6] approach. The trained model,Mimpact composed ofK Gaussians, is represented as
{πk,µk,Σk}k=1,··· ,K .

The k-th Gaussian is parameterized by prior πk, meanµk and covariance matrixΣk, respectively. Theseparameters are calculated employing the Expectation Maximization (EM) algorithm [7]. The optimalnumber of Gaussians K for the impact model can be determined utilizing the Bayesian InformationCriterion (BIC) [8].The probability density of a given feature vector ψ for the impact model Mreach is then given by thelikelihood
P(ψ|Mimpact) =

K∑
k

πkN (ψ|µk,Σk) (3)
The likelihood is a measure of the density of feasible demonstrations in the immediate vicinity. Or, inother words, it is the evaluation of the probability density atψ. It represents a scalar fitness measure ofthe six-dimensional demonstrationψ. In this specific case, it describes the probability to land the objectwith a given contact surface when releasing it at a given release configuration. High density (likelihood)in a region results from the fact that this region was more frequently explored by the provided demon-strations; hence, it has a high probability of representing a feasible end-effector configuration resultingin a smooth impact event, whereas less-dense regions (likelihood less than a threshold) are bad regions,as they are rarely seen in the provided demonstrations. The latter may be due to the robot’s joint lim-its and (self-)collisions, or because of missing the conveyor belt, or due to chaotic impact behavior. Ineither way, in these low-density regions, the existence of a feasible and collision-free joint posture andthe resulting object orientation at rest is known with much less certainty.It is important to note that the impactmodel does not allow querying for joint configurations. It does notinclude inverse kinematics information that would allow doing this. However, due to the sampling pro-cess with positive collision-free examples, we know that for each reachable end-effector configuration,there exists at least one feasible corresponding joint-space configuration.By embedding the set of suitable release configurations in a probability density function, we directlycheck if a certain end-effector configuration is reachable and favorable for releasing the object, withoutrelying on impact simulations or an inverse kinematics solver at run-time.
2.3.3 Release Configuration Optimization

The optimal end-effector configuration λ∗ for releasing the object such that it lands with a specific restorientation is related to the feature vector with the highest likelihood according to (3)
ψ∗ = argmax

ψ
P (ψ|Mimpact)

A locally optimalψ∗ is obtained by computing gradient ascent on the impact-modelMimpact derived inthe previous subsection. The Jacobian of this objective function is given by
∂P(ψ|Mimpact)

∂ψ
=−

K∑
k

πkΣ
−1
k (ψ − µk)N (ψ|µk,Σk) (4)

D2.1 - Impact Posture Planning for Dynamic Manipulation13 H2020 EU project I.AM. (No. 871899)

We initialize the gradient ascent with a random release configuration drawn from the learned GMM andthe desired target rest orientation. In order to keep the specific rest orientation fixed during optimiza-tion, for the gradient ascent we consider only the first five dimensions of the Jacobian (4) related to therelease configuration and nullify the remaining ones. The output of the optimization is a local optimum,i.e., a feature vector that has locally the highest likelihood.
2.4 Joint space release configuration

Considering a redundant robot manipulator, the desired optimal end-effector release configuration λ∗

can be achieved by infinite different joint-space release configurations. The following method describeshow to obtain a specific joint-space release configuration. First, apply inverse kinematics to select arandom joint-space posture q∗ that matches the desired end-effector position x∗. Second, computethe associated Jacobian J. Third, solve a quadratic program for that specific posture utilizing the weightmatrixW to obtain joint velocities q̇∗ that generate the desired end-effector velocities ẋ∗.
argmin

q̇
q̇TWq̇ (5)

s.t. Jq̇ = ẋ∗

This method returns a joint-space release configuration (consisting of joint-space posture q∗ and jointvelocities q̇∗) for the optimal end-effector release configuration. However, due to the iterative process,this method does not ensure that the best joint-space release configuration is selected with respect totrajectory planning and the robot’s current state.
2.5 Tossing with the Panda Robot

In order to reach thedesired optimal end-effector release configurationλ∗, weneed toplan (and executewith the robot) a potentially non-linear point-to-point motion in the joint space. The planning problemis constrained because of the robot dynamics and its mechanical and electrical hardware limitations.Adopting themethod for softly catching an object in flight [9] allows us tomeetλ∗ with the end-effectoras a via-point.EPFL has devised a robot-independent second-order task-space dynamical system (DS) that has beenintegrated into the mc rtc framework [10]. Utilizing the newly developed AGX interface, we can executethe DS-based mc rtc controller with AGX dynamics simulation and for tosses on the real setup.As an alternative, also second-order joint-space DS can steer the robot towards the release configurationproviding joint-space accelerations, see Fig 3.This controller represents a quadratic program (QP) that is solved everymillisecond. It includes the robothardware limits and robot dynamics as strict constraints. As the quadratic objective, the QP minimizesjoint accelerations such that the reference acceleration provided by the DS are tracked as close as possi-ble. Therefore, the mc rtc controller requires no specification of meta-parameters. Finally, the QP jointcommands are provided to the newly developed interface for the panda robot. This interface also allowsactuating the suction pump.
2.6 Quantitative Evaluation

We generated and simulated 300, 000 release configurations which resulted in 225, 407 trials with thebox landing on the moving conveyor belt within 2 seconds. The distribution of surfaces in contact with
D2.1 - Impact Posture Planning for Dynamic Manipulation14 H2020 EU project I.AM. (No. 871899)

Figure 3: Overview of the constraint-aware tossing DS and its integration within the system
the belt is shown in Fig. 4. As expected, the box lands only with four different contact surfaces. This isdue to the release configuration sampling procedure.

contact-surface

1 2 3 4 5 6

p
e
rc

e
n
ta

g
e
 o

f
a
ll

s
im

u
la

ti
o
n
s

0

20

40

60

80

100

41.3

24.8

 8.8

 0.1 0 0

distribution of contact-surfaces at rest

Figure 4: The box object has six flat surfaces with which it can be in contact at rest. The six bars indicatetheir percentage given all simulations.
For visualization, we plot 1000 randomly drawn initial configurations in Fig. 5 and Fig. 6. These distribu-tions are not uniform because of the various constraints.

y position [m]

-1.5 -1 -0.5 0 0.5

z
 p

o
s
it
io

n
 [
m

]

1

1.5

2

2.5

3
initial y & z positions

Figure 5: Distribution of 1000 initial release y- and z-axes positions.
We construct the data-set as described above and learn a GMM utilizing the python sklearn framework
D2.1 - Impact Posture Planning for Dynamic Manipulation15 H2020 EU project I.AM. (No. 871899)

y velocity [m/s]

-2 -1.5 -1 -0.5 0

z
 v

e
lo

c
it
y
 [
m

/s
]

0

0.5

1

1.5

2
initial y & z linear velocities

Figure 6: Distribution of 1000 initial release velocities along y- and z-axes.
for different number of Gaussian components and different types of Gaussians. The BIC curve is shown inFig. 7. It exhibits classical insight. Simplemodels with few Gaussians result in large BIC values. Increasingthe model complexity leads to lower BIC values up to a certain point, then the model starts over-fittingthe data and the BIC values converge. Based on this analysis, the optimum number of components isdetermined as 40, selecting full Gaussians. This model is used in the following experiments.

Number of Gaussians

0 20 40 60 80 100

B
IC

×10
6

-3

-2

-1

0

1

2

3

full

diag

Figure 7: Distribution of 1000 initial release velocities along y- and z-axis.
For each of the four explored surface numbers, we perform the aforementioned gradient ascent utilizingbacktracking line search 50timeswith different randomnumber initialization and startingwith randomlydrawn initial states. As this approach yields local optima, we here select the 10most promising featurevectors with the highest likelihood. Simulating the corresponding release configurations reveals thefollowing success rates:

• 10/10 trials succeed for surface number 1
• 10/10 trials succeed for surface number 2
• 10/10 trials succeed for surface number 3
• 0/10 trials succeed for surface number 4

Finally, we initialize the DS with these optimal release configurations and toss the box with the pandarobot in AGX simulation. This work was made in a joint CNRS-EPFL collaboration.
D2.1 - Impact Posture Planning for Dynamic Manipulation16 H2020 EU project I.AM. (No. 871899)

2.7 Conclusion

Generating postures using a data-driven approach is possible by following in gross a similar methodol-ogy. This work was integrated in the TOSS scenario, deliverable D5.3. However, CNRS does not possessenough knowledge in data-science to pursue further in this direction and EPFL partner has taken thelead in such approaches. Because of different varying parameters, e.g., objects shape, weight (or vary-ing inertia), and nature (rigid, flexible)... it appears a huge endeavor to explore further this direction.Therefore, we started in parallel a more conventional model-based approach based on planning andnumerical optimization. In a later stage, it may be interesting to investigate if both approaches can bemerged to produce a more efficient impact-driven plans.

D2.1 - Impact Posture Planning for Dynamic Manipulation17 H2020 EU project I.AM. (No. 871899)

3 PLANNING-BASED POSTURE GENERATOR

3.1 Overview

Our work’s long-term context is to enable efficient robotic fast grabbing, tossing, and boxing objectsin automated industrial sorting chains. In such applications, robots shall reach, pick and toss or placeobjects of different sizes, shapes, and materials from one location to another as fast as possible. Theproposed frameworks in [11, 12] and many other related works slow down drastically robot motion (upto zero relative velocity) when establishing contact with the environment. We instead aim to generatepowerful impacts intentionally.The previous Section 2 investigated a data-driven approach to generate impact-driven robot posturesand was exemplified in tossing. In this section we approach the problem in a decoupled way. First wedevise a planning brick that plans trajectories from initial robot end-effector pose/velocity to a desiredpose/velocity. Then we connect this planning brick with another brick depending on the use-case ofimpact we address.For the planning brick, our main contribution is to rely on a sampling based algorithm Bi-RTT [13]. Weuse two different approaches separately for the steering method mainly to compare their reliabilityin reaching intended impact contacts with desired velocities. The first approach relies on accelerationlimited trajectory generation where a Double Integrator Minimum Time (DIMT) is the neighborhoodcriterion [14]. This allows us to have non-zero start and end velocities of the planned trajectories. Thesecond one is jerk-limited [15] compared to the first we can add both starting and target accelerationsand also impact point acceleration.Compared to related works, the novelty of our approach lies in defining task coordinates (pick, toss andplace) as a via-point which will be integrated in a time-constrained path. The latter is optimized of agenerated samples’ map, see Fig. 8. Joint limits are also considered within the steering method for theDIMT [14]. For long trajectories, the sample-map segments with limited durationwould also prevent thenumerical integration errors, thus there won’t be any need to define an upper limit time for the wholetrajectory [15].
3.2 Approach

Themain framework is a sampling-basedmethod (extended BiRRT algorithm) in the configuration space,see Fig 8. It grows two trees starting from the initial and final states, see Fig. 9. The steering methodin Fig. 1 lines 12 and 18 is either the DIMT or the jerk-based one. It is evaluated to decide whether a newsample could be added to one of the trees.

D2.1 - Impact Posture Planning for Dynamic Manipulation18 H2020 EU project I.AM. (No. 871899)

Figure 8: The planning approach relies mainly on Bi-RRT in order to get free collision path with a desiredimpact via-point.
This steering method, algorithm 2, has a neighboring function which determines the closest neighborbased on a a distance function. Different metrics were used as distance functions in the RRT algo-rithms [16].In [17] for example, a complex parameter-dependent distance function links the euclidean distance be-tween two robot configurations and corresponding rigid body transformation. Another distance functionused in [18] adds velocity distance term to the euclidean configuration distance in order to count fordesired target velocity. This latter can be replaced by the one we use in our approach, which based ongo-to time between two states [14, 19]. Despite not being a metric because of its asymmetry, it is provento be reliable, parameter-free, and accounts for both position and velocity.

Figure 9: The sampled states are chosen within the feasible set for each DoF, defined by velocity limits(horizontal blue lines) and position limits (vertical red lines), the two grown trees are defined by blueand red edges, each corresponds to its starting point.
For the acceleration-limited trajectory generation, each state is represented by the joint position andvelocity [q, q̇]. This will be extended by adding acceleration [q, q̇, q̈] for jerk-based steering method.As shown in the Algorithm 1, a connection between two trees can be made only when the randomlygenerated state Qr is successfully added to both trees, but this doesn’t guarantee that we would havea better path. Only a better-cost one is chosen (line 25).Each task trajectory can be generated simply by skipping path selection at the first phase of building
D2.1 - Impact Posture Planning for Dynamic Manipulation19 H2020 EU project I.AM. (No. 871899)

sample-map forN iterations. After that the via-point represented in the joint space can be consideredas the new random state. Then the algorithm 1 will extract the path that fulfills all the initial and finalconditions. For redundant robots, we would have for the same task’s via-point multiple joint-spaceconfigurations that will compete to generate the best path.
Algorithm 1 Extended BiRRT Algorithm
1: procedure BiRRT(qmax, qmin, q̇max, q̈max, Pinit, Pfinal,N)2: costi ← 0, costf ← 03: FinalPath← []; FinalCost←∞;4: V 1← [Pinit, Qinit, costi];5: V 2← [Pfinal, Qfinal, costf];6: E1← [];E2← [];7: d← true; % growing direction indicator8: counter← 0;9: while counter ≤ N do10: Qr ← SampleInJointSpace;11: Pr ← ForwardKinematics(Qr);12: T1, S1, costri , JointLimits← Steering(Qr, V 1, d);13: if ¬JointLimits then14: Qi, Pi ← SegmentsGeneration(T1, S1);15: Etemp ← BuildEdges(Qi, Pi, S1);16: V 1← V 1 ∪ [Pr, Qr, costr] ∪ [Pi, Qi, costi];17: E1← E1 ∪ Etemp;18: T2, S2, costrf , JointLimits← steering(Qr, V 2, d̄);19: if ¬JointLimits then20: Qi, Pi ← SegementsGeneration(T2, S2);21: Etemp ← BuildEdges(Qi, Pi, S2) ;22: V 2← V 2 ∪ [Pr, Qr, costr] ∪ [Pi, Qi, costi];23: E2← E2 ∪ Etemp;24: CostTmp = costri + costrf ;25: if CostTmp < FinalCost then26: FinalCost← CostTmp;27: FinalPath← Extractpath(V1, E1, V2, E2, d);28: end if29: end if30: end if31: Swap([V1, E1], [V2, E2]);32: d← d̄;33: counter← counter+ 1;34: end while35: return FinalPath, FinalCost;36: end procedure

The steering method algorithm 2 would ensure that the nearest neighbor is found among the verticesof tree V (line 1) with a total cost to get to Qr. Then, the trajectory S is made of time segments whereeach segment can be tested for joint-position limits (line 2) and eventually for collision. If a segment failsthis test the new state is skipped and not added to the current neighbor tree.The SegmentsGeneration() (line 14 and 20) method allows to generate a constant acceleration/jerk seg-ments which their ends would also be added to sample-map with corresponding position and velocity(and acceleration for jerk steering). One of the main elements of RRT is the edges and that’s what Build-Edges() is for (line 15 and 21). Where each element of Etemp has a constant acceleration/jerk segmentand the duration, that could be used to build the complete path.After checking the cost of the current random-state (or one of the corresponding solutions of the via-
D2.1 - Impact Posture Planning for Dynamic Manipulation20 H2020 EU project I.AM. (No. 871899)

Algorithm 2 Steering(Qr, V, d)
1: Qnear, T, S, costr ← NearestNeighbor(Qr, V, d);2: JointLimits← PositionLimitsViolation(S);3: return T, S, costr , JointLimits;

point), An ExtractPath() method can be applied to the set of both trees edges (line 27).To introduce both steering functions we need to define some notations:
• (q⋆, q̇⋆) position and velocity of one DoF at state ⋆;
• (q̈⋆1 , q̈⋆2) acceleration values of a bang-bang profile;
• (q̇max, q̈max,

...
qmax) velocity, acceleration and jerk limits of a DoF.

3.2.1 Double Integrator Minimum Time

The objective is to find a way to get from a state qi to qi+1, so this DIMT is based on bang-bang profile(2 segments) trajectory for each degree of freedom (DoF) separately, where the acceleration limits areused as velocity ramps. It is supposed to be the fastest straight-line motion possible [20]. This motionprofile would transform to a trapezoidal one (3 segments) at each velocity limits violation.Considering the velocity and acceleration limits of a 1 DOF mechanism, there are four extreme motionsegments possible: the parabolas P+ and P− accelerating at maximum acceleration q̈max and at min-imum acceleration −q̈max, respectively, and the lines L+ and L− traveling with zero acceleration atmaximum velocity q̇max and at minimum velocity−q̇max, respectively. The sign of the first accelerationsegment could be determined programmatically [14] using eq. (6):
σ = sgn(qi+1 − qi − δqacc), (6)

where δqacc is distance crossed while accelerating at q̈max defined as:
δqacc = 1

2
(q̇i + q̇i+1)

|q̇i − q̇i+1|
q̈max

. (7)
Thus we have:

q̈i1 = −q̈i2 = σq̈max

q̇limit = σq̇max.
(8)

D2.1 - Impact Posture Planning for Dynamic Manipulation21 H2020 EU project I.AM. (No. 871899)

(a) In the case of extreme profile -two segments profile.

(b) Three segment profile .
Figure 10: Position-velocity-Acceleration profiles .

In order to determine the profile motion parameters, first, it’s assumed that themotion is two segmentsprofile, where t1 and t2 are to be defined as follows:
1. determine t1 by solving the quadratic eq. (9)

q̈i1t
2
1 + 2q̇it1 +

q̇2i+1 − q̇2i
2q̈i2

− (qi+1 − qi) = 0. (9)
2. check for velocity limits violation,

q̇t1 = q̈i1t1 + q̇i.

if |q̇t1 | > q̇max than we will have a trapezoidal profile with a constant velocity segment defined bythe duration tv:
t1 =

q̇limit − q̇i
q̈i1

(10)
tv =

q̇2i+1 + q̇2i − 2q̇2limit
2q̇limitq̈i1 +

qi+1 − qi
q̇limit , (11)

t2 =
q̇i − q̇limit

q̈i2
(12)

else:
t2 =

q̇i+1 − q̇i
q̈i2

+ t1.

D2.1 - Impact Posture Planning for Dynamic Manipulation22 H2020 EU project I.AM. (No. 871899)

3. the total time is T = t1 + t2 or T = t1 + tv + t2 in case of constant velocity segment.
After calculating the extremal profile for each DoF with the duration Ti, where i = 1, n and n isDoFs number, and Checking for blocked time interval for each one, the minimum-acceleration trajec-tory [14] [18] is applied then to synchronize T for all the DoFs by calculating new profiles parameters asfollows:

T 2q̈i1 + (2T (q̇i+1 + q̇i)− 4(qi+1 − qi))q̈i1 − (q̇i+1 − q̇i)
2 = 0, (13)

the solution with greater absolute value is retained, then the rest of profile parameters are calculatedas follows:
q̈i2 = −q̈i1 (14)
t1 =

1

2

(
q̇i+1 − q̇i

q̈i1
+ T

)
(15)

t2 = T − t1 (16)
if any velocity violation is present in the resultant profile than we calculate first the new

q̇limit = sgn(q̈i1)q̇max,

then the new accelerations are calculatedwith eq. (17) and the durationwith eq. (10),eq. (11) and eq. (12).
q̈i1 = −q̈i2 =

(q̇limit − q̇i)
2 + (q̇limit − q̇i+1)

2

2(q̇limitT − (qi+1 − qi))
(17)

The profile produced is used to extract constant accelerations segments that would be used to check forposition limits and collision violation, and form edges for the concerned tree if they are violations-free.
3.2.2 Jerk-limited trajectory generation

Figure 11: For the jerk-limited planner the states are chosen within the feasible set (green edged poly-tope) for each DoF, defined by velocity, position and acceleration limits.
The algorithm detailed in [15], is online, the resultant motion profile is an S-curve time scaling [20] thatconsists at maximum of seven segments. The approach goes mainly through these steps:

• an optional brake pre-trajectory where the DoF is brought to a safe kinematic state;
• For Each i-DoF, a valid extremal profile is established with a minimum duration Ti,min;
• Check for the blocked time interval for each DoF;
• Synchronize arrival time for all the DoFs respecting the blocked time interval for each one.

D2.1 - Impact Posture Planning for Dynamic Manipulation23 H2020 EU project I.AM. (No. 871899)

3.2.3 Arrival-Time Synchronization and Infeasible Time

In order to obtain both the desired task-space pose with the desired velocity, all the DoFs have to reachtheir target states at the same time. It might appear that choosing the maximum of Ti,min would allowthe robot to reach the desired state, but that’s not true.In [21], [14] and [15] this issue has been investigated for different profiles, blocked intervals a.k.a inoper-ative/ infeasible time intervals for each DoF, in which this latter can’t reach the desired state in a desiredduration. These blocked intervals are linked to the desired state, where a target state that has only posi-tion can be reached at each timewith no blocked intervals. But for targets with velocity and accelerationdesired states there will be at least one inoperative interval. The latter is always between two extremeprofiles.In order to determine the blocked interval [14] in this case, it comes to solve eq. (9) using the followingvalues of the profile parameters:
q̈i1 = −q̈i2 = −σq̈max

q̇limit = −σq̇max
(18)

The smallest solution is the lower bound of the blocked interval and its upper one is defined by thebiggest solution. If the velocity limits are violated than we proceed as explained before for the samecase.
3.2.4 Trajectory Tracking

The trajectory tracking is formulated as a QP posture task [22]. Let the triplet {qref, q̇ref, q̈ref}t ∈ R3n

be position, velocity, acceleration references at t time-step within the generated trajectory, The posturetask error is then defined as:
η =

e
ė

 =

q − qref

q̇ − q̇ref

 . (19)
Described by its state-space dynamics as:

η̇ =

0 I

0 0

 η +

0
I

µ, µ = q̈ − q̈ref . (20)
Choosing control input µ in (20) as

µ = −
[
Ks Kd

]
η, (21)

withKs,Kd are diagonal positive-definite that represent the stiffness and damping gains, the new ac-celeration is:
q̈ = −

[
Ks Kd

]
η + q̈ref , (22)

Having as desired task acceleration q̈d = q̈ref −Kse−Kdė, the QP task formulation is defined as:
min
q̈∈Rn

∥q̈ − q̈d∥2 (23a)
s.t: C(q̇, q)q̈ + d ≤ 0 (23b)

whereC(q̇, q) is the constraints vector related to the robots limits (position, velocity, acceleration, torque,jerk...); the jerk is included in the constraints by deriving generated acceleration. When jerk basedmethod is used, it is (jerk) the key stone to calculate the acceleration, velocity, and position references.Yet in the task formulation it’s not explicitly written; d is the bounds values vector of all these constraints.
D2.1 - Impact Posture Planning for Dynamic Manipulation24 H2020 EU project I.AM. (No. 871899)

3.3 Ballistic Throws

3.3.1 Robot Tossing Workspace

Tomake reasonable tossing operations, one should investigate the toss reachableworkspace of the usedrobot, so that targets should be inside the tossing reachable workspace (Fig. 12). Hence, an iterativealgorithm (based on Monte Carlo) is used along with a ballistic motion model in order to highlight thelimits that can be reached while throwing objects. At first, the reachable workspace is investigated, thanthe Tossingworkspace is estimated from solving simple ballisticmotion discarding any other post-impactphenomena. The surrounding volume is divided into horizontal layers of a specified jumping step. Ateach layer, the tossing-workspace is formed by a surface where all points have the same z.
Algorithm 3 Tossing-Workspace (Robot, Zmax, Zmin, step)
1: RWspace ← ReachableWorkspace(Robot, V, d);2: z= Zmin;3: while z≤ Zmax do4: TWspace ← TossingWorkspace(Robot, RWspace, z);5: z= z+ step;6: end while7: return TWspace;

Figure 12: Panda Reachable Workspace (sphere-like volume with black edges) and Tossing Workspace,for Zmax = 0.5m and Zmin = −0.7m .
3.3.2 Ballistic Optimization

The application would include picking an object from a known position and tossing it from a releasepoint so it would reach a desired final state by performing a ballistic motion. But this doesn’t limit theapproach to only this since it’s task-independent.The release state is determined by a ballistic optimization process considering the robot’s capabilitiesto generate a feasible one. This latter plays the role of the via-point in our planning approach. Otherphenomena could be modeled in this optimization as aerodynamics and bouncing.
D2.1 - Impact Posture Planning for Dynamic Manipulation25 H2020 EU project I.AM. (No. 871899)

we define (Pd, quatd) as the desired position and quaternion orientation of the box and (Ptf ,quattf) ∈
R7 the ones at time-step tf of the ballistic motion defined by:

Ptf =

xy
z

 =

vxtf + xo

vytf + yo

−gt2f + vztf + zo

 , (24)

and
quattf =

∫ tf

0

1

2
Q(ω) ∗ quat dt

ω̇ = I−1τ − I−1(ω × Iω)
(25)

whereQ(ω) is a skew-matrix defined as:

Q(w) =

0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 (26)

where [xo, yo, zo] ∈ R3 is position coordinates of the COM of the object at the moment of release,
(v, ω) ∈ R6 are the linear and angular velocities of the end-effector that would be inherited by thepicked object (under the assumption of rigid connection between bodies), I ∈ R3×3 is the object inertiamatrix and τ ∈ R3 is the external torques for a free ballisticmotion it’s assumed to be absent (τ = 03×1).Considering now that quaternion quat* = {ν*, ϵ*}, we can express eO, the orientation error [23], as:

eO = ℑ[quatd ⊖ quat−1tf] = νtf · ϵd − νd · ϵtf + ϵd × ϵtf (27)
The problem can be formulated as a weighted optimization as follows:

min
q,q̇

w1

∥∥Ptf − Pd

∥∥2 + w2 ∥eO∥2 + w3 ∥vdesired − vimpact∥2 (28a)
s.t: q̇min ≤ q̇ ≤ q̇max (28b)

qmin ≤ q ≤ qmax (28c)
[v, ω] = J(q)q̇ (28d)
∥v∥2 ≤ vmax (28e)
∥ω∥2 ≤ ωmax (28f)

(28g)
where (q, q̇) ∈ R2n are robot’s joint position and velocitywithn as the number of DoFs, J is the Jacobianmatrix, and wi the associated weight to each term.The object impact velocity vimpact is considered in the ballistic optimization, so the generated tossingposturewould induce a desired impact velocity vdesired at the arrival time tf at the end of ballisticmotiontrajectory.
D2.1 - Impact Posture Planning for Dynamic Manipulation26 H2020 EU project I.AM. (No. 871899)

3.4 Impact Grabs

In this section we extend this planner to handle grabbing with impact, and also for dual robots systems.The planner is asked to find feasible collision-free configuration paths for both robots in order grab bymeans of a dual-arm robotic systemanobject characterized by its desired impactingposition and velocityvectors Fig. 13; each impacting contact position is within the reachable workspace of each designatedrobot.The planner would expect that both position and rotation are known for both robots, and since theimpact-planning is executed offline, all the obstacles to be avoided are included in the scene.The problem can be handled in many ways, and since we tend to optimize the running time of a robotand always minimize trajectory duration, the synchronization would be handled during the launching ofpaths-to-impact of both robots. As it can be done to optimize the overall running time of both robotswhich would push one of them to operate in slower pattern than the other one (generally farther con-figurations would maximize time-to-arrival of the generated paths).

(a) Dual panda grabbing scenario, with a nonzero zero impact-grabvelocity (black arrows).

(b) Dual panda grabbing scenario, after executing the planned tra-jectories (blue lines).
Figure 13: Dual panda grabbing scenario.

As this planner can handle both non zero-velocity start and final configuration, many configurations can
D2.1 - Impact Posture Planning for Dynamic Manipulation27 H2020 EU project I.AM. (No. 871899)

be put into cascade to form a full defined series of tasks, i.e dual-grab, dual-toss or dual-place, dual-re-grab.
3.4.1 Synchronizing dual robots for grabbing

As already said, synchronizing both robots could be done either on the planning level, by adding timeconstraints on the planned path for each robot to match the arrival time for both of them , or on controllevel, since the we are using same tracking strategy in section 3.2.4, by introducing the posture task ofthe fastest robot with a delay that corresponds to time difference between the planned paths.
3.5 Real-Robot Experiments

The experiments on the tossing framework are conducted on the 7 DOF Panda Robot from Franka-Emikawith an attached suction cup as a picking tool. The picking process is also handled as a via point. Theobject at the beginning of the trajectory tracking is considered rigidly attached to the suction pump. Therobot’s both reachable and tossing workspace are estimated to provide a reasonable testing target andenhance the role of tossing on the whole workspace volume, see Fig. 12.The generated trajectories by algorithm 1 are passed to a trajectory tracking task (section 3.2.4) imple-mented on the open-source QP controller mc rtc5 that runs at 1 kHz frequency using the necessarydependencies [4] mc franka6 and mc panda7 corresponding to the robot used in the trials.

(a) Position-velocity-Acceleration tracking forjoint 1. (b) the corresponding errors between measuredand reference position and velocity .
Figure 14: Position-velocity-Acceleration tracking.

The trajectory is well tracked as shown in Fig. 14 where we have a limited position and velocity error(|eposition| ≤ 4.10−3rad, |evelocity| ≤ 5.10−3rad/s) for all joints.

5https://jrl-umi3218.github.io/mc_rtc/index.html6https://github.com/jrl-umi3218/mc_franka7https://github.com/jrl-umi3218/mc_panda

D2.1 - Impact Posture Planning for Dynamic Manipulation28 H2020 EU project I.AM. (No. 871899)

4 CONCLUSION

This report describes two different proposed solutions to generate impact-postures or more precisely,impact plans. One is data-driven based on learning to find a suitable release state, which would behandled by a Dynamical System to generate a trajectory to this point, see also deliverable D5.3. Theother would rather plan a trajectory that includes this configuration as via point to ensure safety returnto a rest configuration or as a finale impact-posture.Furthermore we continued by applying these solutions on different use-cases:
1. generate a tossing-configuration using one robot that picks an object from a known position andthrow it to a desired target pose in the tossing reachable workspace with both Learning-DS andPlanning based methods;
2. generate impact-configurations for grabbing task using a dual arm-robots based on planning.

The Data-Driven posture generator is integrated along with the Dynamical System from EPFL, in theRobot-Toss-Scenario, to generate acceleration references that are fed to a mc rtc mc rtc robot QP con-troller.The Model-based Planning posture generator defines full paths with a desired impact task at a knownstep time and it was applied on both Robot-Toss-Scenario and Dual-Grab-Robots.However, up to now, the planning approach is not real-time and this is problematic in many ways. Weshall be able to plan fast so as to estimate the objects inertia on-the-fly using knowledge fromWP3 andsubsequently plan the right trajectories subsequent to each object in the tossing case scenario. We shallalso integrate the suction cup in the planning part for the tossing or boxing, and this is clearly an openchallenge.

D2.1 - Impact Posture Planning for Dynamic Manipulation29 H2020 EU project I.AM. (No. 871899)

5 REFERENCES

[1] S. Brossette, A. Escande, J. Vaillant, F. Keith, T. Moulard, and A. Kheddar, “Integration of non-inclusive contacts in posture generation,” in IEEE/RSJ International Conference on Intelligent Robotsand Systems, 2014, pp. 933–938.
[2] A. Escande, S. Brossette, and A. Kheddar, “Parametrization of catmull-clark subdivision surfaces forposture generation,” in 2016 IEEE International Conference on Robotics and Automation, 2016, pp.1608–1614.
[3] S. Brossette, A. Escande, and A. Kheddar, “Multicontact postures computation on manifolds,” IEEETransactions on Robotics, vol. 34, no. 5, pp. 1252–1265, 2018.
[4] N. Dehio andA. Kheddar, “Robot-safe impactswith soft contacts based on learned deformations,” inIEEE Int. Conf. on Robotics andAutomation, 2021. [Online]. Available: https://hal.archives-ouvertes.fr/hal-02973947
[5] T. Bretl and S. Lall, “Testing static equilibrium for legged robots,” IEEE Transactions on Robotics,vol. 24, no. 4, pp. 794–807, 2008.
[6] S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and generalizing a task in a hu-manoid robot,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37,no. 2, pp. 286–298, 2007.
[7] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via theem algorithm,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 39, no. 1, pp.1–22, 1977.
[8] G. Schwarz, “Estimating the Dimension of a Model,” The Annals of Statistics, vol. 6, no. 2, pp. 461 –464, 1978.
[9] S. S. M. Salehian, M. Khoramshahi, and A. Billard, “A dynamical system approach for softly catchinga flying object: Theory and experiment,” IEEE Transactions on Robotics, vol. 32, no. 2, pp. 462–471,2016.
[10] K. Bouyarmane, K. Chappellet, J. Vaillant, and A. Kheddar, “Quadratic programming for multirobotand task-space force control,” IEEE Transactions on Robotics, vol. 35, no. 1, pp. 64–77, 2019.
[11] H. Pham and Q.-C. Pham, “Critically fast pick-and-place with suction cups,” IEEE Int. Conf. onRobotics and Automation, pp. 3045–3051, 2019.
[12] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “TossingBot: Learning to throw arbitraryobjects with residual physics,” IEEE Transactions on Robotics, vol. 36, no. 4, pp. 1307–1319, 2020.
[13] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to single-query path planning.” inProceedings - IEEE International Conference on Robotics and Automation, vol. 2, 2000, pp. 995–1001.
[14] T. Kunz and M. Stilman, “Probabilistically complete kinodynamic planning for robot manipulatorswith acceleration limits,” in IEEE International Conference on Intelligent Robots and Systems, 2014,pp. 3713–3719.
D2.1 - Impact Posture Planning for Dynamic Manipulation30 H2020 EU project I.AM. (No. 871899)

[15] L. Berscheid and T. Kröger, “Jerk-limited real-time trajectory generationwith arbitrary target states,”in Robotics: Science and Systems, 2021.
[16] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[17] P. Lertkultanon, “Planning algorithms for complex manipulation task,” Ph.D. dissertation, NanyangTechnological University, Singapore, 2017.
[18] C. Lau and K. Byl, “Smooth RRT-connect: An extension of RRT-connect for practical use in robots,”in IEEE International Conference on Technologies for Practical Robot Applications, 2015, pp. 1–7.
[19] K. Hauser and V. Ng-Thow-Hing, “Fast smoothing of manipulator trajectories using optimalbounded-acceleration shortcuts,” in IEEE international conference on robotics and automation,2010, pp. 2493–2498.
[20] K. M. Lynch and F. C. Park,Modern Robotics: Mechanics, Planning, and Control. USA: CambridgeUniversity Press, 2017.
[21] T. Kröger and F. M.Wahl, “Online trajectory generation: Basic concepts for instantaneous reactionsto unforeseen events,” IEEE Transactions on Robotics, vol. 26, no. 1, pp. 94–111, 2010.
[22] K. Bouyarmane and A. Kheddar, “Onweight-prioritizedmultitask control of humanoid robots,” IEEETransactions on Automatic Control, vol. 63, no. 6, pp. 1632–1647, 2017.
[23] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning and Control.Springer, 2009, ch. Differential kinematics and statics, pp. 105–160.

D2.1 - Impact Posture Planning for Dynamic Manipulation31 H2020 EU project I.AM. (No. 871899)

